Relative Roles of Signals Upstream of AAUAAA and Promoter Proximity in Regulation of Human Immunodeficiency Virus Type 1 mRNA 3' End Formation

JAMES D. DEZAZZO, JEANNINE M. SCOTT, AND MICHAEL J. IMPERIALE*
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620

Received 2 July 1992/Returned for modification 3 August 1992/Accepted 17 September 1992

At least two mechanisms have been implicated in regulating poly(A) site use in human immunodeficiency virus type 1 (HIV-1): inhibition of basal signals within 500 nucleotides (nt) of the cap site, leading to specific suppression of the 5' poly(A) site, and stimulation of basal signals by long terminal repeat U3 sequences, leading to specific activation of the 3' poly(A) site. We determined the relative contributions of these mechanisms in a HeLa cell transcription/processing reaction and by transient transfection analysis. In vitro, the efficiency of basal signals is equivalent close to (270 nt) and far from (1,080 nt) the promoter and is stimulated at least 30-fold in both positions by upstream U3 sequences. In vivo, U3 sequences also enhance processing at both positions. There are two additional effects when the poly(A) site is close to the cap site: at least a 15-fold reduction in total RNA levels and a 5-fold decrease in relative levels of RNA processed at the HIV-1 site in constructs containing U3. Both effects are overcome by insertion of upstream splicing signals in an orientation-dependent manner. Splicing appears to influence poly(A)* RNA levels by two distinct mechanisms: stabilizing nuclear transcripts and directly stimulating 3' end formation. It is proposed that upstream elements play major roles in regulating poly(A) site choice and in controlling the subsequent fate of polyadenylated RNA. The impact of these findings on mechanisms of mRNA biogenesis in the HIV-1 provirus is discussed.

During infection, the RNA genome of the retrovirus is transcribed into double-stranded DNA, which upon insertion into the host chromosome can become a transcriptionally active provirus (26). The provirus includes long terminal repeats (LTRs), each of which is divided into three functionally delineated regions: U3, R, and U5 (Fig. 1). The transcription start site is at the U3/R junction, and the polyadenylation [poly(A)] site is at the R/U5 junction. Each LTR also encodes signals controlling transcription initiation and core elements required for 3' end processing. The core processing elements include the AAUAAA signal located 10 to 30 nucleotides (nt) upstream of the poly(A) site and a GU-rich signal located 5 to 50 nt past the site (2). Such terminally redundant transcription and 3' end processing signals pose special regulatory problems to retroviruses. Promoter elements must be recognized only in the 5' LTR, and 3' end processing signals must be used efficiently only in the 3' LTR to ensure adequate levels of viral gene products. Indeed, in cells infected with human immunodeficiency virus type 1 (HIV-1), most if not all detectable transcripts originate from the 5' promoter and are processed at the 3' poly(A) site (4).

Given these regulatory constraints, a provirus must have mechanisms for discriminating promoter and 3' end processing elements in one LTR from those in the other. In the case of promoter control, transcription elongation from the 5' LTR is believed to disrupt stable assembly of transcription initiation complexes in the 3' LTR (7, 12). In the case of 3' end processing control, there are at least two different regulatory strategies, depending on the configuration of core processing signals in the LTR (for reviews, see references 14 and 19). In most avian retroviruses and in human T-cell leukemia virus type I, the AAUAAA signal is encoded in the U3 region. Consequently, in these viruses a complete set of core poly(A) signals is transcribed only from the 3' LTR, allowing exclusive activation of the 3' poly(A) site. In most other retroviruses, including HIV-1, however, the AAUAAA signal is encoded in the R region (Fig. 1). Here, a complete set of core signals is transcribed from both LTRs, presenting a choice of processing sites in the primary transcript. Therefore, in retroviruses such as HIV-1, mechanisms presumably exist to minimize use of the signals in the 5' LTR and to maximize their use in the 3' LTR.

Mechanisms controlling poly(A) site selection in HIV-1 have been extensively investigated with the use of both plasmid and viral systems (3, 4, 9, 24, 25, 27; for a review, see reference 14). It is clear from these studies that U3 sequences stimulate poly(A) site use in the 3' LTR. On both circular plasmids and linear viral chromosomes, these sequences increase the relative use of either the HIV-1 site or a heterologous site at least 20-fold (3, 9, 21, 25). The mechanisms controlling poly(A) site use in the 5' LTR are not clear, however. By extrapolation, studies of processing at the 3' LTR suggest that the core poly(A) signals in the 5' LTR are intrinsically weak because they lack U3 sequences. Complicating this issue are two studies which report that poly(A) site-to-cap site distances of less than 500 nt suppress the use of core processing signals (4, 27). In addition, attempts to study HIV-1 RNA processing close to the promoter in vivo have been hampered by the observation that steady-state RNA levels decline when poly(A) signals are placed close to the promoter (3, 4, 27). Although the
basis for this decrease is not known, it is not attributable to changes in cytoplasmic stability and is observed in a variety of systems with both retroviral and nonretroviral poly(A) signals. Without an explanation, this effect necessarily limits the conclusions of these studies. For example, decreases in levels of RNA transcripts may be due to posttranscriptional events other than decreased 3' end processing. Recently, it has been reported that T7 precursors in which the poly(A) site is close to the cap site are processed efficiently in vitro (24).

To further address these regulatory issues, we have studied the combined regulatory roles of promoter proximity and U3 sequences by developing in vitro and in vivo strategies that provide for the first time a detailed view of processing events close to the promoter. Our results demonstrate a strong positive role for upstream sequences, and less of a role for promoter proximity, in regulating 3' end processing. We present evidence that the general decrease in RNA levels close to the promoter is due to nuclear posttranscriptional events other than 3' end processing. This conclusion is supported by the finding that poly(A)* mRNA levels in HIV-1 can be stimulated by the insertion of splicing signals. We discuss the impact of these findings on regulation of RNA levels in the HIV-1 provirus.

MATERIALS AND METHODS

Reagents. Enzymes and molecular linkers were purchased from New England Biolabs, Inc., Bethesda Research Laboratories, Inc., and Boehringer Mannheim Biochemicals, Inc. Actinomycin D (mammotol) was purchased from Sigma Chemical Co., and radiochemicals were purchased from American Corp.

Transfections and RNA isolation. The human 293 cell line (11) was maintained in Dulbecco's modified Eagle medium supplemented with 10% fetal calf serum and used in all experiments. Transfections were performed as previously described (9), with 15 μg of assay plasmid and 5 μg of control plasmid. Total RNA was isolated 48 h later by the acid guanidium thiocyanate-phenol-chloroform extraction method of Chomczynski and Sacchi (6).

In vitro transcription processing reactions. Nuclear extracts were prepared by the method of Digman et al. (10) and dialyzed in the presence of 0.5 mM phenylmethylsulfonyl fluoride. Conditions for processing reactions are described in detail elsewhere (28). Briefly, circular or linear plasmid DNA was incubated for 2 h at 30°C in a reaction mixture containing 0.5% Ficoll, 3% polyvinyl alcohol, 2 mM MgCl₂, 20 mM creatine phosphate, and 0.5 μM each ATP, CTP, UTP, and GTP. Reactions were terminated by adding 150 μl of ETS (10 mM Tris-HCl [pH 8.0], 10 mM EDTA, 0.5% sodium dodecyl sulfate), standardized by adding 5 μg of control RNA, and extracted once with phenol-chloroform. The reaction products were isolated by ethanol precipitation with 15 μg of yeast RNA as the carrier and analyzed by S1 nuclease mapping as described below. To ensure that these reactions were carried out under conditions of factor excess, we performed control transcription/processing reactions with template concentrations ranging from 0.04 to 3.0 μg per reaction. The amount of 3' end processing in all four constructs increased linearly with template concentration up to 0.3 μg. The in vitro reactions were therefore performed under nonsaturating conditions with equimolar amounts of DNA template.

Plasmid constructions. All plasmids were grown in Escherichia coli DH5α, screened by restriction enzyme mapping, purified by the Qiagen plasmid preparation kit, and quantified by reaction with diphenylamine. All constructs used in this study include a 4-bp mutation in the tar region in R, previously shown to block transcriptional activity of the LTR sequences but not RNA processing (9, 16). Plasmids pH9tar-L3 and PEXΔU3-L3 were used in cloning and have been described previously (9). Splicing signals flanking the second leader exon of the adenovirus major late transcription unit were obtained from pMxSVL (17).

To facilitate sequential cloning steps, a plasmid cassette was first constructed by inserting a 435-nt SrI-PuU1 fragment spanning the promoter, cap site, and first 30 nt of the adenovirus type 2 major late transcription unit (nt 5634 to 6069) into the SrI and Smal sites of pGEM3Zf(+) (Promega). This plasmid, pZMLP, allowed insertion of splicing signals into a BamHI site 33 nt downstream of the cap site and poly(A) signals into an XbaI site 36 nt downstream of the cap site. To construct pU3C-L3, an 805-nt Scal-XbaI fragment from pH9tar-L3 was inserted into the XbaI site of pZMLP via a Scal-XbaI linkage. To add the poly(A) sites in pU3C-L3, an 807-nt XbaI fragment from pHXΔU3-L3 was inserted into the XbaI site of pZMLP, and then a BglII-Sall fragment was replaced with the corresponding fragment from pEH9tar-L3 to place the tar mutation in the HIV-1 sequences.

To make pU3F-L3 and pAU3F-L3, the XbaI fragment in pEH9tar-L3 was replaced with the XbaI fragments from pU3C-L3 and pΔU3C-L3, respectively. For construction of pVU3C-L3, psVU3C-L3, pAΔU3C-L3, and psVΔU3C-L3, a 211-nt EcoRI-BamHI fragment from plasmid pMxSVL, consisting of two exons flanking a 120-nt intron, was inserted in both orientations into the BamHI site of pU3C-L3 and pAU3C-L3 via an EcoRI-BglII linkage. To construct psU3-L3, an 89-nt EcoRI-HindIII fragment from pMxSVL, spanning the 5' exon and first 39 nt of the intron, was inserted into the BamHI site of pZMLP via a BglII linkage. Finally, to construct p3U3-L3, a 122-nt HindIII-BamHI fragment from pMxSVL, spanning the distal 81 nt of the intron and adjoining 3' exon, was inserted into the BamHI site of pZMLP via a HindIII-BglII linkage.

S1 nuclease mapping. Poly(A)* RNA from each transcription or transcription/processing reaction was purified by oligo(dT) chromatography and coprecipitated with 25 μg of yeast RNA as the carrier and analyzed by S1 nuclease mapping as described below. To ensure that these reactions were carried out under conditions of factor excess, we performed control transcription/processing reactions with template concentrations ranging from 0.04 to 3.0 μg per reaction. The amount of 3' end processing in all four constructs increased linearly with template concentration up to 0.3 μg. The in vitro reactions were therefore performed under nonsaturating conditions with equimolar amounts of DNA template.

FIG. 1. Structure of the HIV-1 provirus. The HIV-1 provirus includes LTRs and is transcribed into a pre-mRNA with terminally redundant R and U5 sequences. The cap site and poly(A) (pA) sites are indicated. Solid triangles and boxes flanking each poly(A) site (arrow) represent the core AAUAAA and downstream processing signals, respectively. Hatched boxes represent regulatory processing signals in U3.
used to detect 3' end processing were 3' end labeled at the XbaI site and extend to the BamHI site. Probes used to detect splicing were 5' end labeled at the BglII site and extend to sites upstream of the cap site: a StuI site in the ΔU3-L3 series or a XhoI site in the U3-L3 series. The pellet was resuspended in 50 μl of hybridization buffer [80% formamide, 10 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (pH 6.5), 0.4 M NaCl], heated to 90°C for 3 min, and incubated at 52°C overnight. Following hybridization, each reaction mixture was diluted with 450 μl of ice-cold S1 digestion buffer (0.4 M NaCl, 30 mM sodium acetate [pH 4.5], 1 mM ZnSO4, 10 μg of denatured salmon sperm DNA, 250 U of S1 nuclease). The samples were incubated at 25°C for 2 h, extracted with phenol-chloroform, and precipitated with 5 μg of carrier RNA. Protected probe fragments were separated on a 6% polyacrylamide–8 M urea gel and exposed to Kodak XAR-5 or XRP film at −70°C. The resolved products were quantified by excising them from the gel and counting them in a liquid scintillation counter.

RESULTS

We began this study by constructing plasmids pU3F-L3 and ΔΔU3F-L3 (Fig. 2), in which the HIV-1 poly(A) site with its core processing signals is positioned 1,080 nt from the cap site. Upstream of the R region in pU3F-L3 are 140 nt of U3 sequence, shown previously to stimulate HIV-1 RNA processing (3, 9, 21, 25). In pΔU3F-L3, these sequences are replaced by a segment from the HIV-1 envelope region which is identical in size and has no effect on 3' end processing (9). To study the effects of poly(A)+ RNA on HIV-1 RNA processing, we generated constructs pU3C-L3 and pΔU3C-L3 (Fig. 2), in which the HIV-1 site is positioned 270 nt downstream of the same promoter. The far and close sets of plasmids were then assayed by two different methods: in vitro transcription/processing reactions in a HeLa cell nuclear extract (28) and transient transfection into the human 293 cell line (11). These cells express factors that efficiently drive transcription from the major late promoter used in these constructs (1). In all constructs, the HIV-1 site is followed by the adenovirus L3 poly(A) site as a default site. Thus, both methods rely on cis competition between the HIV-1 site and the L3 site, with the results expressed as ratios of processing at the two sites.

HIV-1 processing signals are not suppressed within 300 nt of the cap site in vitro. We first incubated the four constructs in a HeLa cell nuclear extract, using conditions which support transcription and RNA processing in a coupled reaction. Transcripts in these reactions are properly initiated by RNA polymerase II and are accurately 3' end processed (28). Since this is a soluble system in which a test plasmid incubates for only 2 h, we reasoned that it might provide greater sensitivity in detecting short, processed transcripts. In addition, this assay allows us to directly assess the effects of U3 sequences and promoter proximity to 3' end processing, since the poly(A)+ RNA levels will not reflect other possible events dependent on an intact nucleus. Following incubation of each plasmid, poly(A)+ RNA was isolated and analyzed by S1 nuclease mapping of the 3' ends. The products (Fig. 3A) were subsequently quantified by band excision and scintillation counting. The values are displayed in Table 1. In both the far and close constructs, U3 sequences stimulate the relative level of HIV-1 RNA approximately 30-fold. Moreover, the total level of HIV-1 and L3 RNA, compared with that of control RNA, does not decrease in the close constructs (Fig. 3A; compare lanes 3 and 4 or 5 and 6).

To determine whether these results reflect regulation by U3 sequences at the level of 3' end processing, we performed the following control experiments. First, we evaluated the stability of HIV-1 and L3 transcripts in vitro. It could be argued, for example, that relative to the close constructs, 3' end processing in the far constructs is actually much more efficient, but the resulting poly(A)+ transcripts are much less stable. To test this possibility, we added α-amanitin to each transcription/processing reaction after 2 h and examined the amount of poly(A)+ HIV-1 and L3 transcripts remaining 2 h later (Fig. 3B). There is no significant turnover of any RNA during the course of the reaction, indicating that the levels of HIV-1 and L3 poly(A)+ mRNAs seen in vitro are not being influenced by differential mRNA stability. Second, we tested whether the processed transcripts originating from the close constructs in vitro were, in fact, short transcripts. It was possible that processing at poly(A) sites close to the promoter was inefficient and that we were actually detecting the 3' ends of primary transcripts that had circled the plasmid. To test this possibility, we linearized pU3C-L3 at a SacI site 1,948 bp downstream of the L3 poly(A) site and compared processing from this template with that of its circular counterpart. As shown in Fig. 3C, there is no decrease in processing at the HIV-1 site in the linearized template; therefore, 3' end processing does occur at the proximal poly(A) site. The same result is...
obtained with pΔU3C-L3 or with a plasmid linearized just 5' of the major late promoter (data not shown).

Poly(A)**+** RNA levels in vivo are regulated in multiple ways. Having obtained evidence that U3 sequences, and not promoter proximity, are the primary determinant of HIV-1 poly(A)**+** site selection in vitro, we next tested the relative contribution of these factors in vivo. We transfected each of the four constructs with a control plasmid into the 293 cell line, isolated RNA 48 h later, and quantified the amount of HIV-1 and L3 poly(A)**+** mRNA by S1 nuclease mapping (Fig. 4) and scintillation counting of excised bands (Table 2). In agreement with the in vitro results presented above and in vivo results from previous studies (3, 4, 9, 21, 25, 27), U3 sequences stimulate the relative levels of HIV-1 poly(A)**+** RNA in vivo. Furthermore, we noted two significant differences between the far and close constructs in vivo that are not observed in vitro. First, whereas in vitro there was no difference in the total amount of poly(A)**+** mRNA made by the corresponding far and close constructs, in vivo there is at least a 15-fold decrease in total poly(A)**+** mRNA made from the close constructs relative to the control (compare pU3C-L3 and pU3F-L3 or pΔU3C-L3 and pΔU3F-L3). Second, whereas in vitro U3 sequences enhance the relative levels of HIV-1 mRNA to the same degree in the close and far constructs, in vivo they increase the relative level of HIV-1 mRNA in the far construct about fivefold more than in the close constructs (compare pU3C-L3 and pU3F-L3).

As a control, we tested whether these changes could be accounted for by differential stability of the poly(A)**+** products. After blocking transcription from each plasmid 48 h after transfection by the addition of actinomycin D, we analyzed the poly(A)**+** mRNA remaining at various times afterward by S1 nuclease mapping. The half-lives of the HIV-1 and L3 transcripts, relative to that of control RNA, are essentially the same in all the close and far constructs (data not shown). Thus, the 15-fold changes in the steady-state mRNA levels in vivo cannot be explained by differential stability of the transcripts.

Splicing signals have stimulatory effects on poly(A)**+** RNA levels in vivo. What could explain why a change in mRNA levels between the close and far constructs occurs in vivo but not in vitro? One obvious difference between the close and far constructs is their genetic structure: introns are present in the far constructs but are absent in the close constructs (Fig. 2). Several recent studies have revealed that introns can dramatically influence steady-state mRNA levels by modulating multiple steps in RNA metabolism, including polyadenylation (5, 13, 22).
To test for such effects in our system, we inserted a 220-nt splicing cassette into each close construct between the cap site and HIV-1 poly(A) site to make psvsΔU3-L3 (Fig. 5A) and prvsU3-L3 (Fig. 6A) and examined whether it could confer the processing phenotype of the far constructs. To control for nonspecific spacing effects, we also inserted the splicing cassette in the reverse orientation to make psviΔU3-L3 (Fig. 5A) and psviU3-L3 (Fig. 6A). The S1 analysis of poly(A)+ mRNA derived from transfection of the ΔU3-L3 series is shown in Fig. 5B; quantitative data are shown in Table 2. Inserting the splicing cassette in the correct orientation raises the total amount of poly(A)+ mRNA in prvsU3-L3 to nearly the same level as in pαU3F-L3. By contrast, no such increase is observed upon inserting the splicing cassette in the reverse orientation. The half-lives of HIV-1 and of L3 RNAs relative to that of control mRNA are equivalent for prvsΔU3-L3 and psviU3-L3, as determined by an actinomycin D chase (data not shown). Therefore, the 20-fold stimulation of mRNA production by the splicing cassette is not due to selective stabilization of steady-state transcripts. Moreover, this stimulation is not a result of simply increasing the distance of the HIV-1 site from the promoter. To test for splicing of the poly(A)+ mRNAs in prvsΔU3-L3, a 5'-end-labeled probe was used to map up the site of the splice acceptor site by S1 nuclease analysis. As shown in Fig. 5C, efficient splicing occurs in prvsΔU3-L3 but is not detectable in psviU3-L3. The analysis of the ΔU3-L3 set of constructs therefore reveals that in an orientation-dependent manner, a functional splicing cassette greatly increases the steady-state level of poly(A)+ mRNA.

The S1 analysis of poly(A)+ mRNA derived from transient transfection of the U3-L3 set of constructs is shown in Fig. 6B and Table 2. Similar to its effect in the ΔU3-L3 plasmid series, a splicing cassette in the correct orientation increases the steady-state mRNA levels in prvsU3-L3 to those seen with the far construct (compare psviU3-L3 with pU3F-L3). In addition to this general increase, the splicing cassette in prvsU3-L3 has a specific stimulatory effect: it increases the relative abundance of HIV-1 mRNA over L3 mRNA back to the 35-fold preference seen in pU3F-L3. Therefore, in the U3-L3 series, the splicing cassette stimulates both the total level of processing and the distribution of processing between the two sites. These effects are not due to differential stability of the HIV-1 and L3 steady-state transcripts (data not shown). Thus, the changes in HIV-1 mRNA levels mediated by the splicing cassette appear to reflect regulation of nuclear RNA metabolism, not cytoplasmic stability.

To localize the stimulatory regions of the splicing cassette more precisely, we tested the ability of either the 5' or 3' splice site alone to enhance HIV-1 mRNA levels in the U3-L3 series. (Fig. 6B, lanes 5 and 6). The 5' splice site alone does not stimulate total or relative levels of HIV-1 mRNA, whereas the 3' splice site stimulates both about threefold (compare p5'U3-L3 and p3'U3-L3 in Table 2). When 5'-end-labeled probes were used to map the splice acceptor site, we found that splicing occurs with high efficiency in prvsU3-L3 but is not detectable in psviU3-L3 or in p5'U3-L3 (Fig. 6C). In p3'U3-L3, however, splicing appears to occur at an intermediate level, presumably through use of a cryptic splice donor which is not mapped in this assay. The partial stimulation of HIV-1 mRNA in

TABLE 1. Quantification of in vitro data

<table>
<thead>
<tr>
<th>Construct</th>
<th>HIV/L3*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pU3C-L3</td>
<td>1.3 ± 0.3</td>
</tr>
<tr>
<td>pU3F-L3</td>
<td>1.6 ± 0.5</td>
</tr>
<tr>
<td>pαU3C-L3</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>pαU3F-L3</td>
<td>0.05 ± 0.01</td>
</tr>
</tbody>
</table>

* The amount of RNA processed at the HIV poly(A) site over that processed at the L3 poly(A) site. Results are the averages of four experiments ± standard deviations.

TABLE 2. Quantification of transfection data

<table>
<thead>
<tr>
<th>Construct</th>
<th>Amt of HIV/L3 RNA processed*</th>
<th>HIV + L3/ control*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pU3C-L3</td>
<td>6.2 ± 1.8</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>pU3F-L3</td>
<td>35.2 ± 10.7</td>
<td>3.2 ± 0.6</td>
</tr>
<tr>
<td>prsvU3-L3</td>
<td>32.8 ± 5.2</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>psvvU3-L3</td>
<td>5.2 ± 2.8</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>p5'U3-L3</td>
<td>3.1 ± 1.8</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>p3'U3-L3</td>
<td>15.1 ± 5.1</td>
<td>0.2 ± 0.03</td>
</tr>
<tr>
<td>pαU3C-L3</td>
<td>0.12 ± 0.03</td>
<td>0.17 ± 0.01</td>
</tr>
<tr>
<td>pαU3F-L3</td>
<td>0.12 ± 0.02</td>
<td>2.6 ± 0.39</td>
</tr>
<tr>
<td>prsvU3-L3</td>
<td>0.21 ± 0.05</td>
<td>2.2 ± 0.5</td>
</tr>
<tr>
<td>psviU3-L3</td>
<td>0.11 ± 0.03</td>
<td>0.07 ± 0.03</td>
</tr>
</tbody>
</table>

* See Table 1 for definition. Results are averages of at least three experiments for each construct ± standard deviations.
* Total amount of RNA processed at both sites, normalized to the control value.
p3′U3-L3 may therefore reflect partial stimulation by a weakly spliced intron. Thus, insertion of a functional splicing cassette upstream of the HIV-1 site in the close constructs switches the processing phenotype to that of the corresponding far construct in an orientation-dependent manner.

DISCUSSION

A number of studies of HIV-1 processing have led to the general agreement that U3 sequences enhance the processing efficiency of HIV-1 core elements in the 3′ LTR, but there is contention as to their overall regulatory significance (3, 4, 9, 21, 24, 25, 27; for a review, see reference 14). This debate arises primarily because of two reports that poly(A) site-cap site proximity may suppress processing in the 5′ LTR (4, 27). Here we have described in vitro and in vivo experiments in which high levels of poly(A)+ RNA are seen close to the promoter, allowing us to directly assess regulatory mechanisms operating within 500 nt of the cap site. Employing an in vitro transcription/processing system, we find that poly(A) site-cap site proximity has little or no effect either on the distribution of processing at the two sites or on the total level of processing. U3 sequences, however, stimulate HIV-1 processing efficiency about 30-fold at both positions, suggesting that they are the primary regulatory determinant in vitro. Valsamakis et al. have also recently shown that T7 precursor RNAs containing U3 sequences are processed more efficiently in vitro than are those without U3 sequences (24). This demonstration of U3 function in vitro should greatly facilitate analyses of the exact role of U3 sequences in the processing reaction.

In transient transfection studies, U3 sequences also stimulate processing both close to and far from the promoter, but...
in the close constructs, we detect decreases in both steady-state RNA levels and the stimulatory effect of U3 processing signals. Steady-state decreases have been noted in other studies but have not been explained (3, 4, 27). A plausible explanation is suggested by several clues obtained in this study: (i) they are not caused by differential stability of steady-state RNA; (ii) they are not due to a general inhibition of transcription because, in vitro, poly(A)+ RNA levels in the close constructs accumulate to levels seen with the far constructs; and (iii) they cannot be exclusively explained by changes in transcription or by poly(A) site-cap site proximity because an upstream intron restores levels to those seen in the far constructs in an orientation-dependent manner. On the basis of these data, we propose that transcripts made from the close constructs undergo 3' end processing but are turned over rapidly in the nucleus. We suspect that splicing signals boost the levels of poly(A)+ RNA by at least two mechanisms. First, stimulation of total poly(A)+ mRNA levels in the ΔU3-L3 and U3-L3 series may reflect a general coupling of splicing, 3' end processing, and nuclear export (5, 13, 22). This hypothesis is supported by the correlation of increased splicing efficiency with increased steady-state RNA levels in the U3-L3 series. By such mechanisms, splicing signals may rescue close transcripts from nuclear degradation pathways and allow them to access the steady-state pool. Second, their stimulation of HIV-1 RNA levels in the U3-L3 series suggests that splicing signals may specifically stimulate 3' end processing, in support of the exon definition model proposed by Berget and coworkers (18, 20).

The requirement of U3 sequences for stimulation suggests that terminal exons are better defined with certain classes of poly(A) signals or with relatively strong signals. In summary, the in vivo studies confirm the conclusions of the in vitro studies and lead to the additional finding that upstream splicing signals can dramatically influence poly(A)+ RNA levels, perhaps by multiple mechanisms.

Our ability to detect efficient HIV-1 processing 270 nt from the promoter in vitro and within 500 nt in vivo contrasts with the inability of Weichs an der Glon et al. (27) to detect HIV-1 processing within this range. This difference is not due to our use of a different promoter, as the effect that they saw was promoter independent (27). However, while we measured processing at both sites in a cis competition assay, these investigators measured processing at the downstream competitor site only; processing at the HIV-1 site was inferred. Our results also contrast with those of Cherrington and Ganem (4), who reported a gradual decrease in relative efficiency of core processing signals within 500 nt of the cap site. They also observed a decrease in the absolute level of mRNA at these distances. Our experiments indicate that these investigators may not have detected all of the HIV-1 3' end processing events, since posttranscriptional nuclear events other than 3' end processing may modulate poly(A)+ RNA levels when processing signals are close to the promoter. Therefore, there is no direct evidence that poly(A) site-cap site proximity directly inhibits HIV-1 processing. Nevertheless, we cannot completely discount such an effect of promoter proximity, since we have not examined processing at the HIV-1 site closer than 270 nt from the cap site, even though this is well within the 400- to 500-nt distance within which proximity effects have been reported in HIV-1 (4, 27) and other viral systems (15, 23).

How do these findings relate to the control of mRNA levels in the HIV-1 provirus? At the 3' LTR, processing is stimulated by upstream U3 signals and perhaps also by upstream introns. By mediating spliceosome assembly, the introns may protect the processed RNA from nuclear degradation and direct it to pathways leading to the steady-state pool. In the case of unspliced viral mRNAs, the interaction of the virally encoded Rev protein with the Rev response element provides a similar means for directing nuclear RNA to the steady-state pool (reviewed in reference 7). It may be a combination of these mechanisms in HIV-1 which allows highly efficient expression of mRNAs encoding viral proteins.

At the 5' LTR, the absolute strength of the core poly(A) signals has not been determined. Other investigators have used relative strengths of such core signals, measured in cis competition assays, to argue that such core sequences are efficiently processed and therefore need to be suppressed in the 5' LTR (4, 27). We feel, however, that one cannot make statements about the absolute strength of a poly(A) site on the basis of such assays, since the relative strength varies depending on the competitor. Indeed, even in constructs containing only a single known poly(A) site, there is competition with cryptic sites on the plasmid (9).

Given the limitations of these experimental models, we believe that the absolute efficiency of core processing elements cannot be reliably determined in a context outside of the HIV-1 provirus. It is clear, however, that HIV-1 core processing signals are consistently stimulated 30-fold by U3 sequences. Moreover, in this study, we have shown in vivo that the combined effect of upstream splicing and U3 signals can shift the relative use of the HIV-1 site from approximately 0.1 (pAU3C-L3) to greater than 0.9 (pUV3-U3-L3). Thus, the issue remains as to whether competition actually occurs between the poly(A) sites in the 5' and 3'LTRs on the provirus. In this regard, when an HIV-1 poly(A) site without U3 sequences is placed upstream of a second HIV-1 site with U3 sequences, similar to the situation on the provirus, use of the second site predominates (9). In conclusion, studies of 3'end processing at the HIV-1 poly(A) site are sketching a complex regulatory picture that suggests an interplay of the various steps of mRNA biogenesis in modulating the steady-state output of poly(A)+ mRNA. We expect that this information will be relevant to cellular as well as viral genes.

ACKNOWLEDGMENTS

We thank Rich Jove, Oveta Fuller, and members of the Imperial laboratory for stimulating discussions; Jay Kilpatrick for technical assistance and for reviewing the manuscript; Sue Berget for providing the splicing cassette vector pMXSVL; and Jim Alwine for communicating results prior to publication.

This work was supported by PHS grant GM34902 from NIH. J.M.S. is supported in part by NIH training grant GM07544, and M.J.I. is supported in part by Faculty Research Award FRA-388 from the American Cancer Society.

REFERENCES

5562 DeZAZZO ET AL.

1513–1524.