Small Maf Proteins Heterodimerize with Fos and May Act as Competitive Repressors of the NF-E2 Transcription Factor

KOHSUKE KATAOKA,† KAZUHIKO IGARASHI,‡ KEN ITOH,§ KOSAKU T. FUJIWARA,† MAKOTO NODA,‡ MASAYUKI YAMAMOTO,‡ AND MAKOTO NISHIZAWA†

Department of Viral Oncology, Cancer Institute, Toshima-ku, Tokyo 170,† and Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-77,‡ Japan

Received 29 July 1994/Returned for modification 28 September 1994/Accepted 18 January 1995

The maf oncogene encodes a bZip nuclear protein which recognizes sequences related to an AP-1 site either as a homodimer or as heterodimers with Fos and Jun. We describe here a novel maf-related gene, mafG, which shows extensive homology with two other maf-related genes, mafK and mafF. These three maf-related genes encode small basic-leucine zipper proteins lacking the trans-activator domain of v-Maf. Bacterially expressed small Maf proteins bind to DNA as homodimers with a sequence recognition profile that is virtually identical to that of v-Maf. As we have previously described, the three small Maf proteins also dimerize with the large subunit of NF-E2 (p45) to form an erythroid cell-specific transcription factor, NF-E2, which has distinct DNA-binding specificity. This study shows that the small Maf proteins can also dimerize among themselves and with Fos and a newly identified p45-related molecule (Ech) but not with v-Maf or Jun. Although the small Maf proteins preferentially recognize the consensus NF-E2 sequence as heterodimers with either NF-E2 p45, Ech, or Fos, these heterodimers seemed to be different in their transactivation potentials. Coexpression of Fos and small Maf proteins failed to activate a promoter with tandem repeats of the NF-E2 site. These results raise the possibility that tissue-specific gene expression and differentiation of erythroid cells are regulated by competition among Fos, NF-E2 p45, and Ech for small Maf proteins and for binding sites.

The maf oncogene was identified by structural analysis of the genome of the AS42 avian transforming retrovirus (26, 40). It encodes a nuclear basic-leucine zipper (bZip) protein which can form a homodimer through its zipper structure (23). Recently, we reported that the v-Maf homodimer specifically recognizes two relatively long palindromic DNA sequences, TGCTGACTGAGCA and TGCTGACGTCAGCA, at roughly equal efficiency (24). The middle parts of the two consensus binding sequences for Maf are identical with two well-characterized binding sequences of the AP-1 transcription factor, the 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive element (TRE; TGACTCA) and the cyclic AMP-responsive element (CRE; TGACGTCA), respectively. We therefore named the two types of recognition elements TRE-type Maf recognition elements (MAREs) and CRE-type MAREs. It was also recently revealed that Maf forms heterodimers with the two major components of AP-1, Fos and Jun (24, 27, 28). These heterodimers preferably bind to asymmetric DNA sequences consisting of the two consensus binding sequences of Maf homodimer and AP-1 (24). Thus, Maf and the two AP-1 components are suggested to interact with each other in a cooperative or inhibitory way in association with their recognition sequences by forming heterodimers of altered binding specificities.

Like many other proto-oncogenes, the c-maf gene is a member of a gene family. To date, four maf-related genes, mafK, mafF, mafB, and mafL, have been reported (14, 22, 53). Their gene products are closely related to v-Maf especially in the structure of the DNA-binding domain, suggesting conservation of the binding sequence specificities. The products of the mafK and mafF genes, however, lack the amino-terminal domain of c-Maf/v-Maf (14). Our recent structure-function studies showed that the amino-terminal two-thirds of the Maf molecule, which is absent in the small Maf family proteins, confers the protein’s trans-activating activity (25). As expected from their structure, the small Maf family proteins can act as negative regulators of transcription as homodimers. On the other hand, the small bZip proteins can heterodimerize with another bZip protein, NF-E2 p45, to form a major transcriptional activator of erythroid cell-specific genes, NF-E2 (2, 3, 20, 38).

In this study, we describe the identification and characterization of a new member of the small maf subfamily, mafG. Each small Maf protein, including MafG, was found to be able to form homodimer and intrasubfamily heterodimers which can efficiently bind to the MARE probes. The three small Maf proteins also form heterodimers with Fos and an NF-E2 p45-related molecule, Ech, but not with Jun, v-Maf, and MafB proteins. The Fos-small Maf and Ech-small Maf heterodimers showed binding specificities closely similar to those of the p45-small Maf complexes. Unexpectedly, however, the bZip heterodimers were seemed to associate with distinct trans-activating potentials. Coexpression of Fos and small Maf proteins failed to activate expression of a reporter gene which contains three tandem binding sites for NF-E2. These results suggest the importance of the relative concentration of these
bZip factors in the regulation of growth and differentiation of hematopoietic cells.

MATERIALS AND METHODS

Molecular cloning of the mafG gene. A chicken genomic DNA library was constructed by partial digestion with Sau3AI and size fractionation of chicken genomic DNA followed by ligation to a Charon80A DNA vector BamHI arms. From this library, three genomic clones of the chicken mafG gene were cloned with a 0.65-kb mafG-specific DNA probe excised from plasmid pShaK-1 as described previously (14). To isolate cDNA clones of the mafG gene, the following four cDNA libraries were screened. A chicken embryo fibroblast cDNA library and the RBC-4 anemic hen reticulocyte cDNA library were prepared as described previously (52, 56). The BV4 cDNA library (46) constructed from poly(A)+ RNA of 10-day-old chicken embryos was kindly provided by D. Engel. A chicken brain cDNA library was purchased from Clontech (Palo Alto, Calif.). Plasmid pShaG-1, from which the DNA fragment used as a mafG-specific probe was excised, was constructed by subcloning a 0.7-kb StuI-EcoT22I genomic DNA fragment (nucleotides 274 to 991) into the polylinker of the pGEM plasmid vector.

Production of bZIP proteins in Escherichia coli. For the production of maltose-binding protein (MBP)-fused bZIP proteins in E. coli, we used the expression vector pMAL-c or its derivative, pMAL-cRI (New England Biolabs, Beverly, Mass.). MBP–v-Maf and MBP–v-Jun were synthesized as described previously (24). To construct an expression plasmid for the MBP-MafG fusion protein, a 0.7-kb StuI-EcoT22I fragment was excised from a mafG cDNA. The EcoRI linker was ligated to the StuI site and cleaved with EcoRI, and the resulting fragment was ligated to EcoRI-PvuI-digested pMAL-cRI vector DNA. In the case of MafK and MafF, a 0.7-kb SfiI-EcoT22I fragment of the mafK gene and a 0.4-kb SmaI-NcoI fragment of the mafF gene were converted to EcoRI-HindIII fragments by treatment with the klenow fragment of DNA polymerase I and subsequent addition of linkers. The resultant fragments were recloned between EcoRI and HindIII sites of the pMAL-cRI vector. Recombinant fusion proteins in which the amino-terminal 10 (MafG) or 11 (MafK and MafF) amino acid residues were replaced by the E. coli MBP sequence were expected to be produced from these constructs. E. coli SGI1036, which lacks the lon protease gene, was used to express these MBP-fused small Maf proteins. Molecular cloning and the structure of the chicken cDNA for Ech, a newly identified bZIP factor, was described as described previously (21). The chicken cDNA clone Ech (carboxy-terminal end) was also produced as an MBP-fused protein. These MBP-fused proteins were purified by amylose resin affinity chromatography as described previously (24).

EGMSA. For in vitro transcription and translation, we used a MEGAscript kit (Ambion, Austin, Tex.) and wheat germ extract from Promega (Madison, Wis.). The electrophoretic gel mobility shift assay (EGMSA) was performed as described previously (24). To make mafG mRNA in vitro, a 0.72-kb StuI-EcoT22I fragment of the mafG gene (nucleotides 274 to 991) was excised from a cDNA clone x10 and converted to a HindIII-MluI fragment by adding an MluI linker to the 3' end and the following synthetic oligonucleotide to the 5' end:

\[
\text{5'}-\text{AGCTCATATGACGCGACGACACAAAAAGGAAAGCGGAGGTAGTACGCGCATTGTGTGTCGCCG}
\]

This fragment was then subcloned into a plasmid vector. A 0.74-kb BspHI-MluI fragment which contains all of the coding region was excised from this plasmid clone and replaced with the Neo1-MluI fragment of pRAM-GEM (23), a subclone of the can-maf gene. The structures of the plasmids used as templates for the mafK and mafF mRNAs were described previously (14). The Ech protein synthesized in vitro is an amino-terminally truncated form and contains the carboxy-terminal 157 amino acid residues including the bZIP domain. Point mutants of the small maf family genes (mafK R22E, mafF R22E, mafG R22E, mafK L2PM4F, mafF L2PM4F, and mafG L2PM4F) were constructed by the method of Kunkel et al. (29). The carboxy-terminally truncated version of small Maf proteins, MafK, MafK, and MafF, were generated by cleaving the DNA templates by appropriate restriction enzymes which recognize the carboxy-terminal coding sequence of each. The restriction enzymes and their locations (from 5' to 3') are as follows: for mafK, EcoO109I (369); for mafF, SseI383I (393); and for mafG, BsiXI (676). The nucleotide positions in the mafK and mafF genes are indicated by the numbering system used in our previous publication (14).

Three genes, designated ymafK, ymafF, and ymafG, which encode chimeric proteins of v-Maf and the small Maf proteins were constructed by replacing the 3' half of the can-maf gene in pRAM-GEM with the complete coding sequence of the small maf family genes. The Pt form of the can-maf gene contains almost all of the can-maf coding sequence with the exception of the amino-terminal 18 amino acid residues (23). pRAM-GEM is a subclone of can-maf in pGEM-4 and was used to synthesize the can-maf mRNA in this analysis. To construct the chimeric genes, plasmid pRAM-GEM was digested with BsiHI, and an Ncol linker was ligated to the fragment to construct the BsiHI site (nucleotides 509 of v-Maf) to an Ncol site. This fragment was then digested with MluI. The 3' half of the can-maf gene sequence excised by BsiHI and MluI was replaced with the coding sequences of the small maf family genes, which were excised from their parent clones by double digestion with NotI and either Neo1 or BsiHI. Predicted products of these constructs are chimeric proteins containing the amino-terminal 153 amino acid residues (i.e., amino acid residues 19 to 171) of v-Maf Pt, followed by insertion of two amino acid residues (Val-Thr) derived from the synthetic oligonucleotide sequence and the whole polypeptide sequences of the small Maf proteins. The template plasmids for v-jun and v-fos mRNAs were constructed as previously described (24).

Promoter constructs and transfections. An expression plasmid for mafG was constructed by excising the MluI fragment from the subclone used as a template for in vitro transcription and subcloning it into the BsiHI site of pEF-RshIII, which we previously constructed (22) from the pEF-BOS vector (34). Similarly, expression plasmids for mafK, mafF, and chicken v-fos (39) were constructed by excising coding sequences from the template plasmids for in vitro transcription by digestion with MluI or BsiHI and by recloning into pEF-BosHI. The chicken v-Fos expressed in this experiment is an amino-terminally truncated form but still contains two trans-activator domains of Fos defined by Abate et al. (1) and retains its cell transformation potential (unpublished observation). Within the expressed protein, in contrast to the case of mouse v-Fos and mouse c-Fos, chicken v-Fos does not contain any structural changes from its cellular counterpart, chicken c-Fos (13, 39). The luciferase reporter gene was constructed by inserting three copies of oligonucleotide 25 (see Fig. 5) upstream of the minimal promoter region and was cotransfected with the promoter constructs to give a transfection efficiency of 0.3–0.4 pmol of DNA transfecting plasmid per microgram of DNA transfecting DNA. The number of transfected cells was determined by assaying the luciferase activity in cell lysates as described (13, 39).
FIG. 2. Nucleotide and deduced amino acid sequences of the chicken maG gene. (A) Putative first exon and flanking sequences of the maG gene. Fifteen copies of GC box sequences, CCGCCC and GGCCGG, found in this region are boxed. The 5' terminus of the cDNA clone and the putative splicing donor site for the first intron are indicated by arrows. (B) Second and third exons and flanking sequences. The predicted amino acid sequence is shown under the corresponding nucleotide sequence. Splicing junctions determined by comparison of cDNA and genomic DNA sequences are indicated by arrows. The leucine zipper structure is indicated by asterisks and dotted lines. An in-frame termination codon found just before the initiator methionine codon is boxed. Two contiguous poly(A) signal sequences and three ATTTA sequences, possibly involved in the selective degradation of the mRNA (50), are underlined.
promoter of the rabbit β-globin gene (RBGP). QT6 quail fibroblast cells (36) were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. Transfections were performed as described previously (20).

Nucleotide sequence accession numbers. The nucleotide sequence of the chicken mafG gene has been deposited in the GSDB, DDBJ, EMBL, and NCBI DNA databases under accession numbers D28601 and D28602.

RESULTS

Isolation and structural characterization of mafG. Through an attempt to isolate genomic DNA clones for a maf-related gene, mafK, using the mafK cDNA as a probe, we had previously isolated a member of the maf family gene, mafF (14). Similarly, we identified an additional related gene by analyzing the genomic clones isolated by screening with the mafK probe. Restriction endonuclease mapping and blot hybridization analyses of three overlapping genomic DNA clones suggested that these clones are derived from neither the mafK nor the mafF gene. Figure 1A shows the restriction map of one of the genomic clones, A602. Partial sequence analysis verified that this clone represents a locus of a novel maf-related gene. To confirm that this gene, which we named mafG, is indeed transcriptionally active and to clarify its whole structure, we isolated cDNA clones corresponding to this gene. As shown in Fig. 1B, we isolated five mafG cDNA clones by using the 0.7-kb SstI-EcoT22I fragment (Fig. 1A) as a probe. The mafG gene consists of at least three exons, similar to the mafK and mafF genes. The nucleotide and predicted amino acid sequences of mafG are shown in Fig. 2. Although one of the cDNA clones, λ229, contained a poly(A) stretch at its 3’ terminus and this poly(A) stretch was preceded by two contiguous copies of a polyadenylation consensus sequence (AATAAA), three other cDNA clones (λ10, λ241, and λ236) were found to extend beyond this polyadenylation site (Fig. 1B), suggesting the presence of an alternative poly(A) addition site further downstream. RNA blot analyses showed that the chicken mafG gene is expressed as a transcript of 3.4 kb in various tissues (20, 38a). The cDNA contig (1.7 kb) covers only about half of the major transcript. Considering the fact that both chicken mafK and mafF genes contain long 3’ untranslated regions (UTRs), it seems likely that the missing parts of the cDNA mainly correspond to the 3’ UTR sequence of the transcript. Consistent with this idea, the first exon resides in a typical CpG island (16), which frequently hosts promoters for constitutively expressed eukaryotic genes (Fig. 2A). Sequence in this region is dominated by GC-rich sequence, including more than 10 copies of consensus binding sequences for the Sp-1 transcription factor (GGGCGG and CGGCCC). A possible initiator methionine in the second exon is preceded by a termination codon (Fig. 2B) and shows excellent coincidence with the amino termini of MaFk and MaFf (Fig. 3). We found three copies of an mRNA-destabilizing signal sequence (ATTTA) (50) in the 3’ UTR of the cDNA (Fig. 2B).

The predicted MaF G protein shares highest identity with MaFk and MaFf throughout the molecule except for the carboxy-terminal region (Fig. 3). In this region, MaFg has a unique insertional sequence of 14 amino acid residues (residues 130 to 143). It is evident from this comparison that the three small MaF proteins correspond to the carboxy-terminal half of the v-Maf molecule and lack the amino-terminal putative trans-activator domain of v-Maf. In the bZip domain, especially in the DNA-binding domain, all MaF family proteins are extensively conserved, suggesting they share the same DNA-binding specificity.

DNA-binding specificities of the small MaF proteins. To test the ability of the small MaF proteins to bind to MARE sequences, we translated the Maf family proteins and their mutated forms in vitro and subjected them to EGM S A. Figure 4A schematically represents structures of the mutated forms of the Maf family proteins used in this study. In the case of MaF Δ (lane 13), and its derivatives for the binding assay because intact MaF G protein was insoluble under the conditions of EGM S A (lane 10). All of these proteins were efficiently synthesized in vitro in the presence of [35S]methionine, as judged by sodium dodecyl sulfate-gel electrophoresis and fluorography (data not shown). As shown in Fig. 4B, all of the

FIG. 3. Alignment of the predicted amino acid sequences of Maf family proteins. For the three large Maf proteins (v-Maf, MaFb, and Nrl), only the carboxy-terminal half of each molecule is shown. Amino acid residues conserved with respect to the MaF G protein are boxed. The hydrophobic heptad repeat of leucine residues is shaded. Numbers at the right indicate amino acid numbers. Dashes indicate the absence of the corresponding amino acids. Sequence information is taken from the indicated references.
small Maf proteins efficiently bind to the TRE-type MARE probe (lanes 2, 6, and 13). The mutant proteins, containing a substitution in the putative DNA-binding domain of a conserved arginine residue with a glutamate (MafK R22E, MafF R22E, and MafG ΔR22E), were defective in DNA binding (lanes 4, 8, and 15). Three other mutant proteins, MafK L2PM4P, MafF L2PM4P, and MafGΔ L2PM4P, each of which contains two substitutions of hydrophobic residues for proline residues in the zipper domain, also failed to recognize the MARE probe, probably because of their inability to form dimers (lanes 3, 7, and 14). The amino acid residues substituted in these mutants correspond to two mutants of v-Maf, R22E and L2PL4P, which were shown to be defective in DNA binding (24). From these observations, we conclude that the small Maf family proteins also recognize the specific binding sequences for v-Maf through their bZip DNA-binding domains.

To further characterize DNA-binding specificities of the small Maf proteins, we synthesized the bZip part of the four Maf proteins and v-Jun in *E. coli* as fusions with MBP and subjected them to EGMSA by using a series of oligonucleotide probes (Table 1). As shown in Fig. 5A to D, the bacterially synthesized Maf family proteins efficiently bound both of the two consensus binding sequences for Maf, TRE- and CRE-type MAREs (oligonucleotides 1 and 2; lanes 2, 20, and 21). Various substitutions in the consensus sequences reduced the binding of all four Maf proteins in the same manner, indicating similar binding specificities of the Maf family members. In binding specificities, v-Jun showed a profile different from that of the Maf family proteins (Fig. 5H).

We recently identified a gene which encodes a chicken bZip protein structurally related to mouse NF-E2 large subunit (p45) especially within the bZip domain. Interestingly, like expression of the gene for NF-E2 p45, expression of this novel gene, ech, is abundant in hematopoietic cells (21). As the NF-E2 p45 subunit efficiently heterodimerizes with the small Maf proteins and recognizes the NF-E2 sequences, we tested whether the Ech molecule also can associate with the small Maf proteins and examined DNA-binding specificities of the heterodimeric complexes. To this end, the bZip part of the chicken Ech protein was also synthesized in *E. coli* as a fusion protein with MBP for EGMSA. In the absence of small Maf family proteins, we detected no DNA binding of this MBP-Ech fusion protein to any of the probes (data not shown). Addition of MBP-Ech to MBP-MafK generated a band which migrates slightly faster than an MBP-MafK homodimer band (Fig. 5E). This band most likely represents the Ech-MafK heterodimer. Expectedly, heterodimerization with Ech greatly stimulated the binding of MafK to some probes, including the NF-E2 site probe (lane 1). In the cases of MafF and MafG, the heterodimers with Ech run at a position indistinguishable from that of the homodimers in this assay. Nevertheless, similar changes in DNA-binding specificities for these Maf family proteins were observed upon addition of an excess amount of Ech (Fig. 6F and G).
proteins form intrasubfamily heterodimers, we constructed several additional variants of the small maf family genes and translated them in vitro. Predicted products of these variant genes are schematically represented in Fig. 4A. In this experiment, since multiple bands were produced in EGMSA when RNAs coding for intact MafK and MafF were translated in vitro (Fig. 4B, lanes 2 and 6), we synthesized carboxy-terminally truncated forms of the small Maf proteins and used them for the analysis. The in vitro-synthesized truncated MafK and MafF, which are designated MafKΔ and MafFΔ, gave single discrete bands in the same assay (Fig. 6A and B, lanes 3). We also constructed chimeric genes by inserting the 5’ half of the v-maf coding sequence in front of the entire coding sequences for the small Maf proteins (Fig. 4A). The in vitro-translated chimeric proteins, χMafK, χMafF, and χMafG, efficiently bound the MARE probes and produced a more slowly migrating band in EGMSA (Fig. 6A to C, lanes 2).

Homodimer formation of MafK can easily be identified by subjecting cotranslated MafK molecules of different lengths, MafKΔ and χMafK, to EGMSA. As expected, in addition to the homodimer bands, a band of intermediate mobility most likely derived from the MafKΔ-χMafK heterodimer was also seen (Fig. 6A, lane 4). When one of the two proteins was replaced with a mutant carrying two substitutions in the leucine zipper motif (MafKΔL2PM4P or χMafKΔL2PM4P), the nucleoprotein complex of intermediate mobility disappeared (lanes 5 and 6). Similarly, homodimer formation of MafF (Fig. 6B, lane 4) and MafG (Fig. 6C, lane 4) was also observed. The formation of three forms of intrasubfamily heterodimers, MafF-MafK, MafF-MafG, and MafK-MafG, was clearly demonstrated by using the same approach (Fig. 6D to F, lanes 4). All of these associations required integrity of the leucine zipper motifs (Fig. 6D to F, lanes 5 and 6).

Small Maf proteins heterodimerize with Fos but not with Jun. We previously found that v-Maf heterodimerizes with Fos and Jun nuclear oncogenes (24). We have also recently shown that v-Maf and MafB are unable to associate with the small Maf family proteins (22). In this study, we analyzed combinations of small Maf proteins with AP-1 proteins. As shown in Fig. 7, the MafKΔ homodimer band (lane 1) migrated much faster than the v-Jun homodimer band (lane 5). If these two proteins form a heterodimer, an additional band of intermediate mobility would be detected when the mixture of MafK and v-Jun is used for EGMSA. However, no additional band was observed with the mixture, indicating the inability of MafK to associate with v-Jun (lane 6). Similarly, the two other small Maf proteins were also found to be unable to associate with v-Jun (lanes 7 and 8). As a control, we included the mixture of v-Maf and v-Jun in this EGMSA and found that the association of these two proteins is reproducible (lane 9). It is possible that the small Maf proteins can heterodimerize with Jun but the heterodimers fail to recognize the probe used in this experi-

TABLE 1. Synthetic oligonucleotides used for EGMSA

<table>
<thead>
<tr>
<th>Probe</th>
<th>Sequence</th>
<th>No. of mismatches from consensus sequence of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF-E2</td>
<td>GGCTGACGCGGCA</td>
<td>3/2/0</td>
</tr>
<tr>
<td>1</td>
<td>GGCTGACGCGGCA</td>
<td>0/2/1</td>
</tr>
<tr>
<td>2</td>
<td>GGCTGACGCGGCA</td>
<td>1/3/2</td>
</tr>
<tr>
<td>3</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>4</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>5</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>6</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>7</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>8</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>9</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>10</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>11</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
<tr>
<td>12</td>
<td>GGCTGACGCGGCA</td>
<td>2/4/3</td>
</tr>
</tbody>
</table>

Nucleotides matching MAREs are underlined. Oligonucleotides 1 and 2 contain TRE- and CRE-type MAREs, respectively. Numbers of mismatches from the consensus sequences for Maf (TGCTGACGT-CAGCA) and Jun (TGCTGAGCTCATCAT), and NF-E2 (TGCT- GA/C[CT][TC][CT]) are shown.
ment. Such a possibility is, however, very unlikely because Jun and small Maf proteins, as homodimers, efficiently recognize the probe used in this study.

In contrast to the results with v-Jun, we found that cotranslation of mRNAs for MafG and Fos produced an additional band in EGMSA which represents the Fos-MafG heterodimer (Fig. 7, lane 13). Heterodimer formation with Fos was also observed for MafK and MafF, albeit with apparently reduced efficiency (lanes 11 and 12). EGMSA experiments with various mutants demonstrated that the leucine zipper domain is essential for the association of small Maf proteins with Fos (data not shown). Heterodimer formation of Fos with small Maf proteins was not detected when each protein was translated separately and subsequently mixed before EGMSA (data not shown). As separately synthesized small Mafs and Ech (or NF-E2 p45) can form heterodimers under the same conditions, the affinity of small Maf proteins to Ech and p45 seems higher than that to Fos (see Discussion). Compatibility of dimer formation among the Maf family proteins, Fos, Jun, NF-E2 p45, and Ech is summarized in Table 2.

We next compared DNA-binding specificities of Fos-MafK and Ech-MafK heterodimers by subjecting the cotranslated mixtures of the bZip proteins to EGMSA, using the series of oligonucleotide probes (Fig. 8A and B). The Fos-MafK heterodimer was found to have profiles of DNA-binding specificity similar to those of the Ech-MafK complex. Interestingly, both Fos-MafK and Ech-MafK heterodimers most efficiently recognized two probes (NF-E2 probe and probe 25), both containing the complete consensus binding sequence for NF-E2. Both heterodimers bound in a similar manner to most of
the other probes, suggesting competitive binding of these complexes to overlapping DNA sequences. However, the Fos-MafK heterodimer showed greatly reduced affinity with two probes (probes 27 and 29), each of which contained only one mismatch from the NF-E2 consensus sequence and still efficiently bound to the Ech-MafK heterodimer. Results of competition experiments also supported this conclusion (Fig. 8C and D). Addition of nucleotides 27 and 29 as competitors significantly inhibited binding of the Ech-MafK heterodimer to the labeled probe (probe 11) but inhibited binding of the Fos-MafK heterodimer to the same probe, albeit with reduced efficiency. In similar experiments, mouse NF-E2 p45–small Maf complexes showed binding specificities indistinguishable from those of Ech-small Maf heterodimers (data not shown).

trans suppression by small Maf proteins and the effect of Fos. We have previously shown that the three small Maf proteins act as sequence-specific negative regulators of transcription, but in the presence of p45, they can act as transactivators (20). To examine whether the **trans**-repression properties of small Maf homodimers could be modulated by association with Fos, we analyzed the expression of 3×#25-RBGP, a reporter plasmid which contains the firefly luciferase gene under the control of three tandem copies of the oligonucleotide 25 sequence inserted 5′ to RBGP. Oligonucleotide 25 was used as a target sequence in the reporter plasmid because the heterodimers of small Maf proteins with both Fos and p45 most efficiently bind to this sequence.

Significant endogenous **trans**-activating activity was observed with this reporter plasmid in the QT6 cells used for the cotransfection assay, as was the case for transfection of a similar reporter (pRBGP2) into NIH 3T3 cells (20). More than 50-fold-higher luciferase activity was detected with the 3×#25-RBGP construct than with a reporter construct containing RBGP alone (pRBGP3). In agreement with our previous analysis using NIH 3T3 cells, ~90% of this endogenous activity was suppressed by the expression of MafF or MafG in QT6 cells (Fig. 9).

Our previous study indicated that coexpression of NF-E2 p45 markedly stimulated expression from a similar reporter...
plasmid when reporter expression was suppressed by the presence of either MafK or MafF (20). By heterodimerization with small Maf proteins, p45 could bind to the NF-E2 site and acted as a trans activator of reporter gene expression. Since Fos-small Maf heterodimers were shown to bind to oligonucleotide 25 (Fig. 8), we expected that coexpression of Fos with the small Maf proteins would also stimulate transcription from the test promoter by competition with suppression by the small Maf homodimers. Contrary to our expectation, however, coexpression of Fos with the small Maf proteins failed to rescue the reporter gene expression from this construct (Fig. 9), indicating that the Fos-small Maf heterodimers are defective in trans activation.

DISCUSSION

In this study, we have shown that three small bZip proteins structurally related to Maf nuclear oncprotein, including a newly identified protein, MafG, are able to form homodimers, intrasubfamily dimers, and heterodimers with an NF-E2 p45-related molecule, Ech, and Fos nuclear oncprotein. However, the small Maf proteins could not associate with v-Maf or Jun. These bZip dimers recognize partially overlapping DNA-binding sequences related to an AP-1 site. Thus, these bZip dimers could compete for binding, depending on the target DNA sequences.

The NF-E2 transcription factor is a key regulator of erythroid cell-specific gene expression (31, 33) and is composed of two bZip proteins. NF-E2 p45 and the newly identified related molecule, Ech, are expressed in hematopoietic cells (2, 7, 21) and can associate with either of the small Maf proteins to form dimers which preferentially recognize the consensus sequence of NF-E2 as described previously (3, 20) and as shown in this study. Recently, we observed that the Ech protein shows much stronger trans-activating potential than p45 (21). Therefore, Ech-small Maf heterodimers may be functionally more important than p45-small Maf heterodimers in activating erythroid cell-specific gene expression and regulating hematopoietic cell differentiation. In addition, two other p45-related molecules, Nrf1/LCR-F1/TCF11 (6, 8, 30) and Nrf2 (35), have been identified. These two molecules show ubiquitous expression patterns but may play some regulatory role in hematopoietic cell-specific gene expression.

On the other hand, the fos and jun genes are known to be immediate-early genes, and their products form the AP-1 transcription factor, whose deregulated overexpression induces cell transformation (reviewed in references 12 and 55). The apparent similarity in DNA-binding specificities of these bZip dimers and the direct interaction between the small subunit of the differentiation-inducing factors (small Maf proteins) and the AP-1 component (Fos) are intriguing because terminal differentiation of erythroleukemia cells into the erythroid lineage is known to be inhibited by treatment with TPA, a potent inducer of AP-1 (41). Enforced overexpression of Jun family proteins in the Friend murine erythroleukemia cell line is also known to inhibit its terminal differentiation into the erythroid cell lineage (43). Notably, not only c-Jun but also two jun-related gene products, JunB (45) and JunD (18, 42), which are known to have markedly decreased activities in transcriptional activation and cell growth stimulation (5, 9, 17, 18, 42, 48), are equally effective in inhibition of differentiation of erythroleukemia cells (43). Furthermore, a recombinant avian retrovirus which expresses both v-jun and v-erbB was reported to induce morphological transformation of bone marrow cells of erythroid and megakaryocytic lineages (15). NF-E2 is known to be expressed in erythroid and megakaryocytic lineages, suggesting the functional importance of this transcription factor in these hematopoietic cell lineages. It is thus plausible that, at least in hematopoietic cells, the Jun proteins contribute to cell transformation through inhibition of differentiation by competing with transcription factors essential for cell differentiation (Fig. 10), not by activating growth-stimulatory genes, similar to the dominant negative effect of the v-ErbB against c-ErbB (the thyroid hormone receptor) and the retinoic acid receptor (11, 47, 49).

Hematopoietic cells are known to express c-fos at high levels (10, 12, 37). TPA treatment of K562 erythroleukemia cells rapidly induces an increase in AP-1 activity and a simultaneous decrease of NF-E2 DNA-binding activity (32, 51). Interestingly, decrease of NF-E2 activity correlates well with down-regulation of transcription driven by an erythroid cell-specific promoter of the human porphobilinogen deaminase gene, which contains a typical NF-E2-binding site (32, 51). In the light of the present study, we speculate that the results of these previous studies may reflect an interaction of Fos with small Maf proteins in competition with the functional NF-E2 complexes. Although small Maf proteins appear to bind p45 and Ech with higher affinity than Fos, the presence of a large excess of Fos may overcome the differences in affinity. Indeed, TPA treatment of mouse erythroleukemic cells greatly enhanced expression of the c-fos gene and of mRNAs for MafK, NF-E2 p45, and c-Jun (unpublished observation). Consistent with our observations, Auwerx et al. (4) reported that TPA treatment of a human erythroleukemic cell line induces c-fos mRNA about ninelfold, while the induc-
tion of c-jun is only twofold. It is therefore very likely that in the presence of an excess amount of c-Fos compared with its preferable partner, c-Jun, most of the small Maf molecules are present as heterodimers with c-Fos (Fig. 10). Suppression of the porphobilinogen deaminase gene promoter during TPA treatment might be due to occupation of the NF-E2 site by the Fos-small Maf heterodimers, which have been shown to be transcriptionally inactive. Consistent with this hypothesis, constitutive expression of the c-fos gene has also been reported to inhibit erythropoietin-induced differentiation of the SKT6 murine erythroleukemia cell line (54). To further explore the molecular mechanisms of differentiation control of hematopoietic cells, quantitation of the amounts of Maf proteins, AP-1 proteins, NF-E2 p45, and their related proteins before and after treatment of the cells with inducers or inhibitors of differentiation will be necessary. This analysis is currently under way, using mouse erythroleukemic cells.

Whereas all three small maf family genes are expressed not only in hematopoietic cells but also in wide variety of tissues (14), expression of NF-E2 p45 is limited in hematopoietic cells (2, 3, 7, 21). In other tissues, most of the small Maf molecules may be present as homodimers and may act as negative regulators of transcription. A transient increase of Fos in response to growth-stimulatory signals could modify the binding specificities of small Maf proteins. Alternatively, ubiquitously expressed p45-related molecules such as Nrf1/LCR-F1/TCF11 (6–8, 30) and Nrf2 (35) may act as heterodimeric partners of the small Maf proteins. Since these molecules do not efficiently form homodimers and are significantly homologous with p45, it seems likely that these molecules also form heterodimers with the small Maf proteins and specify the binding of the heterodimers to DNA sequences related to the NF-E2 site. The strong endogenous trans-activating activity found in QT6 cells and NIH 3T3 cells with the 3× NF-E2 site–RBGP reporter plasmid (Fig. 9) might be due to the endogenous activity of such complexes.

Heterodimers of many bZip proteins, including Maf, Fos, Jun, NF-E2 p45, and their related molecules, can recognize sequences related to an AP-1 site. These complexes could differentially affect the expression of target genes. Such interactions of tissue-specific factors and nuclear proto-oncogene products could be the basis for intricate fine tuning of transcriptional control of many cellular genes and cell differentiation. This study also raises the possibility that overexpression of the bZip nuclear oncoproteins participates in the cell transformation process by functionally antagonizing the key regulators of differentiation.

ACKNOWLEDGMENTS

We thank Ikuko Takahashi for excellent technical assistance, Sharad Kumar and Daniel Poole for careful review of the manuscript, and Jun-ichi Fujisawa for useful suggestions. We are also grateful to Doug Engel for a chicken cDNA library, Shige Kazu Nagata for the pEF-BOS vector, and Peter K. Vogt for the recombinant clone of v-jun.

This work was supported in part by a research grant from the Princess Takamatsu Cancer Research Fund, by the Uehara Memorial Foundation, and by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture of Japan to M. Nishizawa.

ADDENDUM IN PROOF

After this paper was accepted, we noticed the possibility that the ech gene is a chicken counterpart of the human nrf2 gene, as the predicted amino acid sequence of the Ech protein is about 64.8% identical to that of Nrf2. However, the expression profiles of the two genes are substantially different. Further studies are necessary to determine whether the two genes are cross-species homologs.

REFERENCES

