The genes of the Saccharomyces cerevisiae RAD52 epistasis group are required for the repair of ionizing radiation-induced DNA damage. Three of these genes, RAD51, RAD55, and RAD57, have been identified as putative RecA homologs. An important feature of RecA is its ability to bind and hydrolyze ATP. RAD55 and RAD57 contain putative nucleotide binding motifs, and the importance of these motifs was determined by constructing site-directed mutations of the conserved lysine residue within the Walker A-box. Changing the lysine residue to arginine or alanine resulted in a mutant phenotype in DNA repair and sporulation for Rad55 but not for Rad57. Protein-protein interactions among Rad51, Rad55, and Rad57 were tested for by the two-hybrid system. Rad55 was shown to interact with Rad51 and Rad57 but not with itself. Additionally, no interaction between Rad57 and Rad51 or between Rad57 and itself was detected. Consistent with the hypothesis that Rad55 and Rad57 may function within, or stabilize, a protein complex, we found that RAD51 expressed from a high-copy-number plasmid suppresses the DNA repair defect of strains carrying rad55 and rad57 mutations. These data, in conjunction with other reports, demonstrate the importance of protein-protein interactions in the process of DNA repair.

In the yeast Saccharomyces cerevisiae, three DNA repair pathways have been defined on the basis of genetic analysis of radiation-sensitive mutants. Genes in the RAD3 group are required for nucleotide excision repair, the RAD6 group of genes is required for error-prone repair, and genes in the RAD52 group are implicated in the recombinational repair of double-stranded breaks (12). The RAD52 group mutants (rad50-57, xrs2, and mre11) share the property of extreme sensitivity to ionizing radiation but exhibit considerable heterogeneity in other phenotypes related to recombinational repair. The RAD52 and RAD57 genes form a subgroup with similar properties. Strains carrying rad55 and rad57 mutations show reduced spontaneous mitotic recombination, but recombination is still induced by UV light or ionizing radiation (30, 39, 43). In contrast, rad51 and rad52 mutations confer defects in both spontaneous and induced mitotic recombination (1, 36, 38, 43). Most of the genes of the RAD52 epistasis group are required for meiosis. There is some evidence to suggest that RAD57 functions late in meiotic recombination. First, when rad57 diploids are returned to vegetative growth medium after induction of meiosis, quite high levels of intragenic recombination are observed (14), and second, physically recombined DNA molecules are detected at wild-type levels and with normal kinetics during meiosis (6). However, rad57 strains show decreased viability during meiosis, and spore products are inviable (14). Spore inviability is a common feature of mutants defective in meiotic recombination, because recombination is required for the correct segregation of homologs at the meiosis I division.

Both point and disruption mutations of RAD55 confer cold sensitivity for the repair of ionizing radiation-induced DNA damage (30). Spontaneous mitotic recombination is reduced in a similar temperature-dependent manner in strains disrupted for either RAD55 or RAD57 or for both genes (39). This cold sensitivity has been interpreted to mean that Rad55 and Rad57 function within or stabilize a protein complex. On the basis of the similarity of mutant phenotypes, it is likely that they function in the same complex. In addition, an extragenic mutation that suppresses the X-ray sensitivity of both the rad55 and rad57 mutations (cited in reference 30) was isolated. Further evidence for a complex that functions in recombinational repair of double-stranded breaks derives from studies on the interaction between the Rad51 and Rad52 proteins (32, 47). However, both proteins clearly have roles other than that of the Rad51-Rad52 complex, as single and double mutants have distinct phenotypes in spontaneous mitotic recombination, HO-induced recombination, and integration of linear DNA during transformation (38, 45, 50).

The RAD55 and RAD57 genes were cloned by complementation of the X-ray-sensitive phenotype (8). Sequence analysis indicates that both predicted peptide sequences share homology with prokaryotic RecA and with two other yeast proteins, Rad51 and Dmc1 (22, 29). Rad51 is likely to be a functional homolog of RecA (1, 2, 47). The Rad51 protein is capable of forming nucleoprotein filaments on duplex DNA remarkably similar to those formed by RecA (34) and exhibits strand exchange activity in vitro (51). On the basis of sequence alignment, Dmc1 may also be a RecA homolog (5, 49). However, the DMC1 gene is expressed only in meiotic cells, and dmc1 mutants have no known phenotype in mitotic recombination or DNA repair (5). Dmc1 and Rad51 have been shown to colocalize in meiotic nuclei at sites suggested to represent recombination nodules (4). Of the putative RecA homologs, Rad55 and Rad57 have the least amount of homology to RecA (21% identity) and are lacking some of the conserved regions thought to be important in RecA function. Clearly RAD51, RAD55, and RAD57 are not redundant since mutation of any of these genes confers X-ray sensitivity. A lack of functional redundancy was also observed for spontaneous mitotic intrachromosomal recombination, as a rad51 rad55 rad57 triple
mutant showed the same rate of recombination as a rad51 single mutant (39). In addition, mutation of any of the four putative RecA homologs confers a meiosis-defective phenotype (5, 35). These observations suggest that each of these yeast proteins has a unique function in the pathway that catalyzes homologous DNA pairing and strand exchange.

In this study, we present genetic evidence for interactions among Rad51, Rad55, and Rad57 based on two-hybrid technology and high copy suppression. In addition, we have characterized the phenotype of disruption and point mutations of RAD55 and RAD57 for DNA repair, mating-type switching, and sporulation.

MATERIALS AND METHODS

Media, growth conditions, and genetic methods. Rich medium (YEPD), synthetic complete (SC) medium lacking the appropriate amino acid or nucleic acid base, and sporulation media were prepared as described previously (46). Cells were grown at 23, 30, or 37°C as stated for each experiment. Transformations were performed by the lithium acetate method (19). Sporulation was carried out as described previously (46). Briefly, diploid yeast strains containing plasmids were grown overnight on synthetic minimal medium plates which selected for the maintenance of the plasmid. Each strain was then replica plated onto sporulation medium (46) and grown at room temperature (~25°C) for 3 to 5 days. The percent sporulation was determined by microscopic analysis of cells scraped from the sporulation plates and resuspended in water. Percent sporulation values are the averages of two independent cultures of each strain, and no fewer than 200 cells were counted per sample. Cells with three to four visible spores were considered sporulated. Cells with fewer than three visible spores were considered unsporulated. Tetrad dissection was carried out as described previously (46).

Escherichia coli strains were grown at 37°C in Luria-Bertani medium supplemented with 100 µg of ampicillin per ml to maintain plasmids.

Strains. A list of the yeast strains used in this study is shown in Table 1. All strains are isogenic to W303 (53), except as noted. U672, which contains the rad55 allele, was constructed by J. McDonald and R. Rothstein with a 460-codon fragment which replaces codons 193 to 374 of the Rad55 ORF. Plasmids were maintained and amplified in E. coli CJ236 (27) was used as a host for M13 template. The 1.2-kb HI fragment to pGAD10 (which contains amino acids 768 to 881 on July 5, 2017 by guest http://mcb.asm.org/ Downloaded from
A DNA fragment which contained BamHI restriction sites at the 5' and 3' ends of the RAD57 ORF was made by a PCR, with primer 5'-GGGGATCCCT ATGCTTAAGGCTATTATCA-3' and 3'-GGGGATCTTACAGGCTGT TTCTATGTT-3' being used as the primers and YEp13-RAD57 as the template. The 1.4-kb RAD57-containing PCR fragment was digested with BamHI and ligated to pBTM116 cut with BamHI to generate plexA::RAD57. pGAD10: RAD57 was constructed by ligating the 1.4-kb BamHI fragment to pGAD10 digested with BglII. Both plexA::RAD57 and pGAD10:RAD57 were sequenced to confirm that the RAD57 ORF was fused in frame with the lexA ORF on the GAL4 activating domain ORF. plexA::RAD57 was tested and shown to complement the γ-ray sensitivity phenotype of yeast strain W826-6C.

Other plasmids, pRS423:RAD51 was constructed by ligating a 3.7-kb BamHI fragment from YEp13:RAD51 (8) to pRS423 digested with BamHI. pGAD10: RAD51 was a gift from Christian Bendixen and contains the complete RAD51 ORF fused in frame with the GAL4 activating domain encoded on pGAD10. YCp10::HGO and pGAL::HGO were generously provided by I. Herskowitz (17, 42).

γ-Irradiation survival assays. Cells were grown in liquid medium at various temperatures to mid-log phase. The cultures were serially diluted (five 10-fold dilutions), and then aliquots of each dilution were plated on solid medium. The plates were irradiated in a Gammacell-220 irradiator containing 60Co γ-rays. The 1.4-kb BglII fragment (Atomic Energy of Canada) at 0, 5, 10, 15, 20, 25, or 30 kilorads. Cells grown at 37°C were incubated for 2 days before survivors were counted. Each strain was assayed three separate times, and the mean survival for each dose is presented.

Two-hybrid interaction assay. The LexA fusion constructs and the GAD10 fusion constructs were cotransformed into CTY105-5d. Initially, β-galactosidase production was determined by a filter assay as described by Breeden and Nasmyth (7). Quantitation of β-galactosidase production was determined as described previously (33), with the following alteration. Because of differences in growth rates, the strains were grown on solid medium. Cells were scraped from the plates and then resuspended in 2X buffer. Each strain was assayed three times, and the mean value for each strain is reported.

RESULTS

rad55, rad57, and rad55 rad57 mutants are cold sensitive for the repair of ionizing radiation-induced DNA damage. The original studies indicating cold sensitivity for DNA repair of rad57 mutants were performed with a single allele, rad57-1 (cited in reference 13). To determine whether other alleles conferred the same phenotype, haploid strains that contained either a LEU2 insertion which replaced the middle one-third of the RAD57 ORF or a URA3 insertion which replaced the first two-thirds of the RAD57 ORF were constructed. Haploid strains containing these two disruption alleles were equally sensitive to γ-irradiation, and those grown at 37°C showed a 10-fold greater resistance to radiation than those grown at 23°C at the highest dose examined (Fig. 1; only data from the rad57::LEU2 strain is shown). An isogenic strain containing a disruption of the RAD55 gene showed resistance to ionizing radiation similar to that observed for the rad57 mutant at both temperatures (Fig. 1). Although the alleles of RAD55 and RAD57 used in this study do not remove the entire ORF, they are likely to be representative of the null phenotype, as a deletion of the entire RAD55 ORF has the same phenotype as the LEU2 insertion (30). A rad55 rad57 double mutant was found to have sensitivity to γ-irradiation at 23°C equal to that of either of the single mutants, but at 37°C, it was slightly more sensitive than either of the two single-strain mutants. For purposes of comparison, the survival curves of a rad51 mutant at both temperatures are shown. The rad51 mutant is equally sensitive to radiation at both temperatures; thus, temperature suppression is not a general feature of rad mutants.

It has been reported that homozygous rad55 and rad57 diploid strains exhibit greater resistance to ionizing radiation than the corresponding haploid strains (30, 43). This phenomenon, referred to as diploid specific, is also observed in rad50 and vr2 mutants (20, 43) and was confirmed with diploids containing rad55 or rad57 disruption mutations (Fig. 2). The suppression of the radiation sensitivity caused by temperature and mating-type heterozygosity was less than that reported previously for rad55 strains (30). Since the same allele of RAD55 was used in both studies, this difference is likely to be due to genetic background differences. These results confirm previous observations of suppression of the rad55 and rad57 phenotypes by temperature and mating-type heterozygosity. Furthermore, the similar phenotypes of the rad55, rad57, and rad55 rad57 strains suggest that they function at the same step in DNA repair.

rad55 and rad57 mutants are unable to switch mating type.

Various DNA lesions, including strand breaks and modified bases, are generated by exposure of cells to ionizing radiation. To determine the response of rad55 and rad57 mutants to a single well-defined double-stranded break, we have utilized the mating-type switching system. The HO endonuclease initiates mating-type switching by the introduction of a site-specific double-stranded break at the MAT locus (24). Failure to repair the break by recombination results in lethality. By dissection of

FIG. 1. rad55 and rad57 single mutants and rad55 rad57 double mutants are cold sensitive for ionizing radiation repair. The strains used for these experiments were W303-1A (RAD) (C), YRJ46 (rad55) (+), U672 (rad55) (D), W826-6C (rad57) (×), and YRJ54 (rad55 rad57) (E). Experiments were carried out at 37°C (A) and 23°C (B). γ-Ray sensitivity was determined as described in Materials and Methods. Krad, kilorads.

FIG. 2. γ-Ray sensitivity of haploid and diploid rad strains. Yeast strains W303-1A (RAD) (D), YRJ46 (RAD/RAD) (+), U672 (rad55) (D), YRJ52 (rad55rad57) (×), W826-6C (rad57) (H), and YRJ53 (rad57/rad57) (C) were analyzed for γ-ray sensitivity at 23°C as described in Materials and Methods. Krad, kilorads.
tetrad from diploids heterozygous for HO and for RAD51 or RAD52, the pattern of spore inviability demonstrated that expression of the HO endonuclease is incompatible with either rad mutation (1, 31). We used a similar approach to determine whether HO expression is lethal in rad55 and rad57 mutants. Initially, diploids heterozygous for either gene were transformed with a low-copy-number (CEN) plasmid containing the HO gene regulated by its native promoter (YCp50:HO). Tetras from these strains were dissected, and the viability and mating phenotype of the resulting spores were determined. For both strains, the percent spore viability was the same as that observed for the wild-type diploid. Furthermore, 75% of the spores that contained the rad mutation and the HO gene were nonmaters, indicating that mating-type switching and diploidization had occurred. This result suggested either that there is sufficient RAD55 and RAD57 gene product inherited by the mutant spores to allow them to go through the first switch or that RAD55 and RAD57 are not required for mating-type switching. This was addressed in two ways. First, we showed that haploid rad55 and rad57 strains could not be transformed with YCP50:HO, whereas they were readily transformed with YCP50. Second, a plasmid in which HO expression is regulated by the GAL10 promoter was introduced to the haploid rad mutants. The plating efficiency of the rad55 and rad57 strains was reduced 100-fold on galactose-containing medium compared with that of the wild-type strain. Thus, RAD55 and RAD57 are required for mating-type switching, consistent with the results of Sugawara et al. (30).

The nucleotide binding site of Rad55, but not that of Rad57, is important for function. The region of the Rad55 and Rad57 proteins most highly conserved with RecA encompasses the nucleotide binding site (29). This region contains two sequence motifs which are highly conserved among nucleotide binding proteins and which are called the Walker A-type and B-type boxes (55). Mutation of the conserved lysine residue within the A motif (GXXXXGT/S) has been shown to confer a mutant phenotype in a number of proteins (28, 47). By site-directed mutagenesis, the conserved lysine residue within the A-type box of Rad55 (lysine 49) and of Rad57 (lysine 131) was changed to either an arginine or alanine residue. To test the phenotype of these mutations, each was cloned into a centromere-containing plasmid and then was introduced into a strain containing the appropriate rad disruption allele. Comparisons of their abilities to complement the null mutant phenotype were made among the strains containing the vector alone, the vector with a wild-type copy of the gene, and either of the point mutations. Strains containing the rad55KR49 and rad55KA49 alleles were deficient in DNA repair after growth at 23°C (Fig. 3). However, strains containing these alleles were more resistant to radiation than strains with the vector alone. To determine whether these alleles were also defective for sporulation, the four plasmids were used to transform a rad55 homozygous diploid and the resulting strains were sporulated at 23 or 30°C.

Because most yeast strains fail to sporulate at temperatures greater than 34°C (15), we were unable to test for the phenotype at 37°C. At both of the temperatures examined, less than 1% sporulation was observed in diploids containing the vector or the rad55KA49 and rad55KR49 mutations (Table 2). The RAD57 alleles were tested in a similar fashion by transforming each plasmid into haploid or diploid strains containing a disruption of the RAD57 gene. However, in this case, both the rad57K131 and the rad57KR131 plasmids were able to complement the DNA repair defect for strains grown at 23°C (Fig. 3). These alleles were tested for their ability to complement the sporulation defect of a diploid strain homozygous for the rad57::LEU2 disruption mutation. Both plasmids complemented the sporulation defect of this strain whether it was grown at 23 or 30°C (Table 2). Twenty tetrads from each of these strains were dissected and shown to have greater than 95% spore viability, the same as that observed for the wild-type strain.

If Rad55 forms nucleoprotein filaments analogous to those formed by RecA, a dominant negative phenotype might be expected from the expression of the rad55KA49 allele in wild-type strains. This was tested by transferring this allele to a high-copy-number plasmid and determining the radiation resistance of a wild-type strain transformed with the plasmid. No increase in radiation sensitivity was observed at any of the temperatures tested (data not shown). Even though rad57K131 does not have a mutant phenotype, we also tested this allele for a dominant negative phenotype. No increase in radiation sensitivity was observed when the plasmid containing this mutation was introduced into a wild-type strain.

Interactions between the Rad51, Rad55, and Rad57 proteins. Because of the similar phenotypes of rad55 and rad57 mutants, we considered the possibility that these two proteins are part of a protein complex. To test this hypothesis, the two-hybrid interaction system of Chien et al. (9) was used. The Rad55 ORF or Rad57 ORF was fused to the sequence encoding the LexA DNA binding domain in plasmid pBTM116.

FIG. 3. The nucleotide binding site of Rad55, but not Rad57, is essential for function. (A) The yeast strain U672 was transformed with the following plasmids: pRS316 (+), pRS316::rad55-KA (), pRS316::rad55-KR (×), pRS316::rad55-K4 (■), pRS316::rad55-K9 (), and pRS316::rad55-K9 (□). (B) The yeast strain W826-6C was transformed with the following plasmids: pRS313 (□), pRS313::rad57-KA (■), pRS313::rad57-K9 (×), and pRS313::rad57-K9 (□). -Ray sensitivity was determined as described in Materials and Methods. All experiments were carried out at 23°C. Krad, kilorads.

TABLE 2. Sporulation of rad mutants

<table>
<thead>
<tr>
<th>Relevant genotype</th>
<th>Plasmid</th>
<th>% Sporulationa</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD/RAD</td>
<td>None</td>
<td>81.9</td>
</tr>
<tr>
<td>rad55/rad55</td>
<td>pRS316</td>
<td><0.5</td>
</tr>
<tr>
<td>rad55/rad55</td>
<td>pRS316::rad55</td>
<td>77.8</td>
</tr>
<tr>
<td>rad55/rad55</td>
<td>pRS316::rad55-KA</td>
<td>0.5</td>
</tr>
<tr>
<td>rad55/rad55</td>
<td>pRS316::rad55-KR</td>
<td>0.5</td>
</tr>
<tr>
<td>rad55/rad57</td>
<td>pRS313</td>
<td><0.5</td>
</tr>
<tr>
<td>rad55/rad57</td>
<td>pRS313::rad57</td>
<td>74.4</td>
</tr>
<tr>
<td>rad55/rad57</td>
<td>pRS313::rad57-KA</td>
<td>47.8</td>
</tr>
<tr>
<td>rad55/rad57</td>
<td>pRS313::rad57-KR</td>
<td>51.0</td>
</tr>
</tbody>
</table>

a Sporulation was carried out on plates at 23°C as described in Materials and Methods.
The cold sensitivity conferred by Rad51, Rad55, and Rad57 are part of a multiprotein complex. Several lines of evidence suggest that Rad55 protein requires nucleotide binding and/or hydrolysis to carry out its biological function. The same mutations in Rad57 confer barely detectable defects in DNA repair and sporulation, which argues that Rad57 does not require a nucleotide cofactor for function. Several lines of evidence suggest that Rad55 and Rad57 interact, and we confirmed this interaction by the two-hybrid system. In addition to detecting an interaction between Rad55 and Rad57, we also discovered that Rad55 interacts with Rad51. High copy plasmids containing Rad51 suppress the DNA repair defect of rad55 and rad57 mutants, supporting the idea that these interactions are biologically relevant. These results are discussed in more detail below.

Relationship of Rad55 and Rad57 to prokaryotic RecAs. Through sequence analysis and by modeling of the primary amino acid sequence onto the three-dimensional structure of the E. coli RecA protein, four proteins from S. cerevisiae have been classified as RecA homologs (18). Such comparisons make the prediction that these proteins should have at least

TABLE 3. Physical interactions among Rad proteins

LexA fusion plasmid	GAD fusion plasmid	Sp act (nmol/min/mg of protein)	Fold increase
pBTM116	pGAD10	0.35	NA
plexA:RAD55	pGAD10	3.4	1
	pGAD:RAD51	801	236
	pGAD:RAD55	5.1	1.5
	pGAD:RAD57	27	7.9
plexA:RAD57	pGAD10	0.48	1
	pGAD:RAD51	0.62	1.3
	pGAD:RAD55	65	135
	pGAD:RAD57	0.33	0.7

* Specific activity was determined as described in Materials and Methods.
* To determine the fold increase for strains carrying plexA:RAD55, the specific activity of each strain was divided by the specific activity of CTY10-5d (plexA:RAD55 and pGAD10). To determine the fold increase for strains carrying plexA:RAD57, the specific activity of each strain was divided by the specific activity of CTY10-5d (plexA:RAD57 and pGAD10).

* NA, not applicable.
some of the biochemical properties of RecA. For Rad51, this comparison seems to be valid. Like RecA, Rad51 has a DNA-dependent ATPase activity and is able to form filaments on double-stranded DNA similar in structure to filaments formed by RecA (34). In addition, Rad51 has recently been shown to catalyze ATP-dependent strand exchange in vitro (51). The human homolog of Rad51 also forms filaments on double-stranded DNA and has the additional RecA properties of forming filaments on single-stranded DNA and causing ATP-dependent unwinding of superhelical DNA (3). To date, no strand exchange activity has been reported for human Rad51. Although these results are consistent with the notion of Rad51 playing a direct role in recombination, quite high levels of recombination occur in rad51 mutants (38, 45). Furthermore, recent results suggest that the primary role of the Rad51, Rad54, Rad55, and Rad57 proteins may be in facilitating strand invasion into normally inaccessible DNA (50).

In their analysis showing a structural similarity between RecA and Dmc1, Story et al. (49) defined four classes of invariant or conserved amino acid residues, each class being involved in a different aspect of RecA structure and function. When the same residues in Rad55 and Rad57 are considered, Rad55 is 83% conserved and Rad57 is 92% conserved, about twice the degree of similarity expected if the conserved residues were distributed completely at random. Conservation of the structural and functional domains supports the hypothesis that Rad55 and Rad57 are RecA homologs. However, we should point out that Rad55 does not contain glycine 211 and glycine 212, and Rad57 contains only glycine 211. In prokaryotic RecA proteins, these two glycines are invariant and are thought to interact with DNA and/or participate in a conformational change in the RecA protein upon ATP binding. The absence of these residues may reveal a basic difference between RecA and Rad55 and Rad57, indicating that Rad55 and Rad57 have retained only a part of the biological function of RecA.

As was expected, the substitution of alanine or arginine for lysine 49 within the nucleotide binding domain of Rad55 results in reduced resistance to ionizing radiation and complete loss of the ability to sporulate. This result is consistent with the notion of Rad55 requiring nucleotide binding and/or hydrolysis for biological activity. However, the same alteration (lysine 131 to alanine or arginine) in Rad57 resulted in a mutant that was proficient in DNA repair and sporulation. Although mutations of the conserved lysine residue in the Walker A-box frequently result in a mutant phenotype, there are exceptions in which proteins with the same mutations retain biological activity. For example, transformation of a plasmid containing priAK230 (R or A) into E. coli strains with a priA null mutation restores the normal growth rate, viability, and morphology of the cell (56). Also, recA-K72R is defective in DNA repair and its ability to support plaque formation in red gam phage λ (28); however, in vitro RecA-K72R is capable of catalyzing strand exchange (40). The examples of PriA and RecA show that mutation of the lysine in the nucleotide binding domain does not always result in a completely defective protein.

Self-association of RecA monomers is essential for the ability of RecA to form nucleoprotein filaments and carry out strand exchange. Self-association of Rad51 has been demonstrated in vivo by the two-hybrid system (10). In addition, rad51K1491 confers a dominant negative phenotype for DNA repair, consistent with the formation of a protein complex. It would be predicted that if Rad55 polymerizes to form a filament similar to those of RecA and Rad51, the rad55K49 mutation should confer a dominant negative phenotype. Although the failure to observe a dominant negative phenotype could be interpreted as evidence against Rad55 being a RecA homolog, it is worth noting that the same mutation in the Ustilago maydis REC2 gene also does not confer a dominant negative phenotype (41). The Rec2 protein has been purified and promotes ATP-dependent homologous pairing and strand exchange in vitro, as was expected for a RecA homolog (23).

Requirement for protein-protein interactions for DNA repair and recombination. Numerous processes require the formation of biologically active protein complexes. For example, E. coli recombination requires the RecBCD nuclease-helicase protein complex, the RuvAB protein complex is required for branch migration, and the RecA protein self-associated complex is required for strand exchange (25). The requirement for protein complexes to carry out DNA repair in S. cerevisiae is becoming more evident. UV excision repair involves the TFIH1 complex, which can be purified as a large complex associated with all of the proteins required for the incision step of nucleotide excision repair (52). Mismatch repair in S. cerevisiae requires two MutL homologs, Mhl1 and Pms1, which form a heterodimer (37). In conjunction with Msh2, Mhl1 and Pms1 are likely to form a ternary complex during the initiation step of mismatch repair. Recombinational repair is likely to involve interactions between Rad51 and Rad52. In vitro, Rad51 has been shown to interact with itself and Rad52 (47). Experiments with dominant negative alleles of Rad51 and Rad52 illustrate the importance of these types of interactions in vivo and support a model in which a complex of at least Rad51:Rad52 and Rad51:Rad52 is important for DNA repair (10, 32). The yeast single-stranded DNA-binding protein (RPA or RFA) may also participate in this complex. An allele of rfa1 was recently identified in a screen for mutants deficient in HO-induced recombination (11). The recombination and repair defects of this strain were found to be suppressed by RAD52 in a dosage-dependent manner.

Several lines of evidence suggest that Rad55 and Rad57 are also part of this complex. First, both rad55 and rad57 mutations show cold sensitivity for DNA repair. Second, as was detected by the two-hybrid system, Rad55 interacts with Rad57 and Rad51. And third, high copy plasmids containing RAD51 suppress the γ-ray sensitivity phenotypes of rad55 and rad57 mutants. Hays et al. (16) have also shown interactions among Rad51, Rad55, and Rad57 by two-hybrid technology and high copy suppression. In addition, they have shown that RAD52, when present on a high copy number plasmid, suppresses the DNA repair and recombination defects caused by rad55 and rad57 mutations (16).

There are at least three models which are consistent with these data. One model predicts that Rad51, Rad52, Rad55, and Rad57, and possibly other factors, form a multiprotein complex involved in recombinational repair. Rad55 and Rad57 could be accessory factors which stabilize Rad51 interactions with single-stranded DNA or enhance its activity. When Rad51 is present at a high concentration, for example, when it is expressed from a high copy number plasmid, recombinational repair would be less dependent on the accessory proteins. Two examples of accessory proteins that enhance the activity of prokaryotic strand exchange proteins have been reported. First, the bacteriophage T4 ubsY protein interacts with a single-stranded DNA-binding protein (gp32) and facilitates binding, by protein-protein interactions, of the ubsX strand exchange protein to DNA (21). Second, the E. coli RecF, RecO, and RecR proteins form a complex that stimulates RecA-promoted strand exchange by displacement of SSB from single-stranded DNA (54). Rad55 and Rad57 could potentially play a similar role in stabilizing the Rad51 presynaptic filament. Another model predicts that Rad51, Rad55, and Rad57

MOL. CELL. BIOL. 4848 JOHNSON AND SYMINGTON
act in a recombinational pathway in a sequential manner. Results from experiments on spontaneous mitotic recombination with a chromosomal inverted repeat support this idea. Rattay and Symington (39) proposed that recombination lesions are channeled into a recombination pathway which includes Rad51, Rad54, Rad55, and Rad57. Protein-protein interactions are an appealing method by which these proteins may be localized to the site of DNA repair. Finally, it could be argued that in S. cerevisiae, efficient strand exchange is carried out by a mixed filament of the putative RecA homologs.

ACKNOWLEDGMENTS

We are indebted to S. Lovett for providing plasmids and the sequence of RAD55 prior to publication and to S. Hays and P. Berg for communicating results prior to publication. We thank C. Bendixen, I. Herskowitz, J. McDonald, R. Rothstein, D. Schild, and D. Shore for gifts of plasmids and strains. We also thank S. Gangloff, W. Holloman, and J. Smith for critical reading of the manuscript.

This research was supported by a grant from the American Cancer Society (NP-861). L.S.S is a scholar of the Leukemia Society of America.

REFERENCES

31. Malone, R. E., and R. E. Esposito. 1980. The RAD52 gene is required for homothallic interconversion of mating type and spontaneous mitotic recombin-
host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. Genetics 122:19–27.

