Molecular and Cellular Biology, May 1997, p. 2436-2447
Vol. 17, No. 5
0270-7306/97/$04.00 + 0
Copyright © 1997, American Society for Microbiology

Genetic and Biochemical Analysis of Msh2p-Msh6p: Role of ATP Hydrolysis and Msh2p-Msh6p Subunit Interactions in Mismatch Base Pair Recognition

ERIC ALANI,1,* TANYA SOKOLSKY,1 BARBARA STUDAMIRE,1 JUAN J. MIRET,2† AND ROBERT S. LAHUE2†

Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703,1 and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 016552

Received 23 September 1996/Returned for modification 25 November 1996/Accepted 25 January 1997

Recent studies have shown that Saccharomyces cerevisiae Msh2p and Msh6p form a complex that specifically binds to DNA containing base pair mismatches. In this study, we performed a genetic and biochemical analysis of the Msh2p-Msh6p complex by introducing point mutations in the ATP binding and putative helix-turn-helix domains of MSH2. The effects of these mutations were analyzed genetically by measuring mutation frequency and biochemically by measuring the stability, mismatch binding activity, and ATPase activity of msh2p (mutant msh2p)-Msh6p complexes. A mutation in the ATP binding domain of MSH2 did not affect the mismatch binding specificity of the msh2p-Msh6p complex; however, this mutation conferred a dominant negative phenotype when the mutant gene was overexpressed in a wild-type strain, and the mutant protein displayed biochemical defects consistent with defects in mismatch repair downstream of mismatch recognition. Helix-turn-helix domain mutant proteins displayed two different properties. One class of mutant proteins was defective in forming complexes with Msh6p and also failed to recognize base pair mismatches. A second class of mutant proteins displayed properties similar to those observed for the ATP binding domain mutant protein. Taken together, these data suggested that the proposed helix-turn-helix domain of Msh2p was unlikely to be involved in mismatch recognition. We propose that the MSH2 helix-turn-helix domain mediates changes in Msh2p-Msh6p interactions that are induced by ATP hydrolysis; the net result of these changes is a modulation of mismatch recognition.

Mismatch repair is a highly conserved process that results in the removal of base pair mismatches that occur during DNA replication, DNA damage, and genetic recombination (25, 37, 45). Much of our understanding of mismatch repair comes from Escherichia coli, where an in vitro repair reaction was developed and individual components were identified and purified to homogeneity (28, 36). This approach led to the identification of three proteins, MutS, MutL, and MutH, that were shown to be important for the initial steps in mismatch repair. These steps are thought to involve MutS binding to the base pair mismatch, followed by ATP-dependent binding of MutL to the MutS-mismatch complex (15). This complex is then thought to activate MutH, an endonuclease that cleaves only the unmethylated strand of hemimethylated GATC sites that are present immediately after passage of a DNA replication fork. The sensitivity of MutH endonuclease to methylation results in incision of the newly replicated strand. Excision of this strand proceeds through the region of DNA containing the base pair mismatch. This is then followed by resynthesis of the excised strand using the parental strand as a template. The mechanistic steps leading to MutH activation are not clear but have been shown to require ATP hydrolysis (4, 57). Interestingly, only MutS displays an ATP hydrolysis activity; this activity results in the loss of mismatch recognition when MutS-dependent mismatch binding reactions are performed in the presence of ATP (15, 53, 54).

As a first step toward understanding the role of ATP in mismatch repair, Haber and Walker (17) showed that MutS bound and hydrolyzed ATP with a K_m of 6 μM and a K_{cat} of 0.26 μM ADP/min/μM MutS. They also showed that mutS-KA622, a mutant protein that contained a mutation in the ATP phosphate binding loop (P-loop) consensus, displayed reduced ATPase activity; the K_m of ATP hydrolysis for mutS-KA622 was 30-fold higher and the K_{cat} was four- to fivefold lower than for the wild-type protein. Interestingly, mutS-KA622 specifically recognized DNA containing base pair mismatches, albeit with reduced affinity. Genetic analysis indicated that the mutS-KA622 mutation displayed a null phenotype and was dominant over wild type when overexpressed. A large number of dominant negative E. coli mutS mutations were subsequently identified by Wu and Marinus (61); they also showed that a subset of these mutations mapped to regions containing ATP binding domain consensus sequences. This observation was of interest because the bacterial, yeast, and human MutS homolog protein complexes failed to specifically bind to DNA containing base pair mismatches in the presence of ATP but displayed specific mismatch binding in the presence of nonhydrolyzable ATP analogs (1, 11, 15). Taken together, these data suggest that ATP binding and hydrolysis play a critical role in modulating the mismatch recognition activity of MutS and its homologs.

We are interested in understanding how mismatch repair proteins recognize base pair mismatches and transduce the mismatch recognition signals that result in excision repair steps. We use the yeast Saccharomyces cerevisiae, which contains six MutS homologs, Msh1p to Msh6p, as a model system.
recognition, modulation of mismatch binding by ATP, and interaction with Msh6p. The msh2-GD693 ATP binding domain mutation resulted in phenotypes that were similar to those observed for the mutS-K4622 mutation; mutations in the helix-turn-helix domain of Msh2p resulted in phenotypes and biochemical properties consistent with defects in ATP binding and hydrolysis and/or complex formation with Msh6p. Based on these data, we propose that the helix-turn-helix domain plays a role in modulating mismatch recognition by responding to conformational changes in Msh2p and Msh6p that are induced by ATP hydrolysis.

MATERIALS AND METHODS

Strains. E. coli RKY1400 (thr leu86 thi thyA tcpC117 hisK12 leuK12 stre rcsA13) was kindly provided by R. Kodolanyi and was used to amplify and manipulate all plasmids described in this report. S. cerevisiae BY5446 (MATa ura3-52 trp1 leu21 his3A200 pep4-1 HSS1 phb1A1.0 rca1 GAL1) was obtained from the Yeast Genetic Stock Center and was transformed with pEAE51 (GAL10-MSH6 TRP1 2μm) and derivatives of pEAE20 (GAL10-MSH2 URA3 2μm) containing wild-type and mutant msh2 alleles; this strain was used for the overexpression and purification of wild-type and mutant Msh2p-Msh6p complexes. The FY strains were kindly provided by F. Winston (59). Yeast strains were transformed with episomal vectors by using the lithium acetate method described by Gietz and Schiestl (13).

Media, Reagents, and Chemicals. E. coli strains were grown in LB broth or on LB agar that was supplemented with ampicillin (100 μg/ml) when required (33). Yeast strains were grown in either YPD or minimal selective media (52). Selective media contained 0.7% yeast nitrogen base, 2% agar, and 0.09% of dropout mix that lacks the amino acid used for selection; 2% glucose, 2% sucrose, 5% glycerol, 2% lactate, and 2% galactose were included as indicated. Selective medium containing 2% galactose and sucrose was used in the complementation and dominance tests that involved expression of GAL10-MSH2 and mutant derivatives expressed in pEAE20. When required, canavanine (Sigma, St. Louis, Mo.) was included in minimal selective media lacking arginine at 60 μg/ml.

ATP and AMP-PNP (adenyl-imidodiphosphate) were from Pharmacia (Upplands, Sweden) and Boehringer Mannheim (Indianapolis, Ind.), respectively, and BSA5 0.45-μm-pore-size nitrocellulose filters were from Schleicher & Schuell (Keene, N.H.). Protein determinations were determined by the Bradford dye method, using bovine serum albumin (BSA) as a standard (7), and reagents were obtained from Bio-Rad (Richmond, Calif.). Purified antihemagglutinin (mouse monoclonal antibody) was purchased from Boehringer Mannheim. For column chromatography, PBE94 was purchased from Pharma- cia, and single-stranded DNA (ssDNA)-cellulose (catalog no. D8273) was purchased from Sigma; all resins were precycled according to the manufacturer’s instructions. Protein standards were myoglobin (205 kDa), β-galactosidase (116 kDa), phosphorylase b (97.4 kDa), serum albumin (66.2 kDa), and ovalbumin (44 kDa) and were obtained from Bio-Rad.

Determination of mutation rates. Colonies of wild-type and msh2A strains containing msh2 plasmids described in Table 1 were streaked onto selective minimal plates to form single colonies. Plates contained 2% galactose and sucrose for experiments involving Msh2p overexpression from GAL10 2μm vectors and contained 2% glucose for experiments involving expression of Msh2p from ARS-CEN vectors. Strains were grown at 30°C until colonies had formed containing approximately 107 cells. Eleven colonies from each strain were resuspended in water and then plated with the appropriate dilution onto arginine dropout plates containing or lacking canavanine (60 μg/liter). The same carbon source was used for the entire experiment. The frequency of canavanine resistance was determined for each colony, and the median frequency was then recorded.

Nucleic acid techniques. All restriction endonucleases, T4 polynucleotide kinase, T7 DNA ligase, T4 DNA polymerase, and Vent polymerase were from New England Biolabs and used according to manufacturer’s specifications. PCR was performed for site-directed mutagenesis by the overlap extension method (19). Most reactions involved 12 PCR cycles using a denaturation step of 1 min at 94°C, a renaturation step of 1 min at 50°C, and a polymerization step of 2 min at 72°C. Reactions were performed in 50 μl with 10 pmol of each primer and 1 μg of yeast pEAE20. Plasmid DNA was isolated by alkaline lysis, and all DNA manipulations were performed as described previously (30). Oligonucleotide synthesis and double-stranded DNA sequencing of the entire subcloned fragments used to make the msh2 mutant alleles were performed at the Cornell DNA Sequencing Facility.
Canavanine resistance frequencies were determined for msh2 and MSH2 strains containing the indicated msh2 alleles substituted into the pEA39 (MSH2 clones) or pEAE20 (GAL10-MSH2) (2μm) parental plasmid (see Materials and Methods for pEA and pEAE designations). Strains bearing the YCP50 (ARS-CEN URA3) vector were used in the null allele experiments. These strains were grown in glucose or galactose-sucrose medium as described in Materials and Methods. For each strain, the median frequency of canavanine resistance was determined for 11 independent colonies. In some cases, the median canavanine resistance frequencies calculated in independent experiments are shown. All data are presented relative to the median canavanine resistance frequency (values in boldface type) obtained in strains bearing a 2μm vector containing GAL10-MSH2 (pEAE20). The median range of canavanine resistance in msh2 and msh2Δ strains bearing pEAE20 ranged from 0.5×10^{-10} to 1×10^{-6}. See text for designation of mutant classes.

Table 1. Median frequencies of spontaneous mutations in msh2Δ (EAY252) and MSH2 (EAY236) strains bearing the indicated msh2 alleles on ARS-CEN and GAL10 2μm plasmids

<table>
<thead>
<tr>
<th>Allele (class)</th>
<th>msh2Δ (ARS-CEN)</th>
<th>msh2Δ (GAL10 2μm)</th>
<th>MSH2 (ARS-CEN)</th>
<th>MSH2 (GAL10 2μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>2.0, 1.7</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Null (III)</td>
<td>54, 54, 32, 84</td>
<td>54, 54, 32</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>GD693 (II)</td>
<td>35, 27</td>
<td>35</td>
<td>1.5</td>
<td>50, 33, 24, 95</td>
</tr>
<tr>
<td>GD855 (II)</td>
<td>36</td>
<td>57</td>
<td>1.1</td>
<td>91, 50</td>
</tr>
<tr>
<td>VD858 (II)</td>
<td>35</td>
<td>31</td>
<td>1.3</td>
<td>87, 39</td>
</tr>
<tr>
<td>AE859 (I)</td>
<td>44, 34</td>
<td>6.7</td>
<td>1.4</td>
<td>5.5</td>
</tr>
<tr>
<td>VD682 (I)</td>
<td>41, 20</td>
<td>7.1</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>QG863</td>
<td>NT</td>
<td>1.3</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>PD865 (I)</td>
<td>8.5, 8.2</td>
<td>1.5, 1.0</td>
<td>1.2</td>
<td>1.8, 1.2, 2.0, 1.9</td>
</tr>
<tr>
<td>EK866</td>
<td>NT</td>
<td>1.1, 0.84</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>VD689 (I)</td>
<td>15, 10</td>
<td>1.0, 1.9</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>AD872 (I)</td>
<td>45, 37</td>
<td>9.3, 4.1</td>
<td>1.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Δ60 (II)</td>
<td>NT</td>
<td>33</td>
<td>NT</td>
<td>4.7</td>
</tr>
<tr>
<td>Δ60 (III)</td>
<td>NT</td>
<td>43</td>
<td>NT</td>
<td>1.4</td>
</tr>
<tr>
<td>GD693, GD855 (II,II)</td>
<td>NT</td>
<td>100</td>
<td>NT</td>
<td>78, 44</td>
</tr>
<tr>
<td>GD693, VD858 (II,II)</td>
<td>NT</td>
<td>33</td>
<td>NT</td>
<td>68</td>
</tr>
<tr>
<td>GD693, AE859 (II,II)</td>
<td>NT</td>
<td>35</td>
<td>NT</td>
<td>56</td>
</tr>
<tr>
<td>GD693, VD862 (II,II)</td>
<td>NT</td>
<td>47</td>
<td>NT</td>
<td>49</td>
</tr>
<tr>
<td>GD693, PD865 (II,II)</td>
<td>NT</td>
<td>29</td>
<td>NT</td>
<td>3.6, 2.6, 3.7</td>
</tr>
<tr>
<td>GD693, AD872 (II,II)</td>
<td>NT</td>
<td>35</td>
<td>NT</td>
<td>4.5, 2.8</td>
</tr>
<tr>
<td>GD693, Δ6 (II,III)</td>
<td>NT</td>
<td>25</td>
<td>NT</td>
<td>6.7</td>
</tr>
</tbody>
</table>

* Canavanine resistance frequencies were determined for msh2 and MSH2 strains containing the indicated msh2 alleles substituted into the pEA39 (MSH2 clones) or pEAE20 (GAL10-MSH2) (2μm) parental plasmid (see Materials and Methods for pEA and pEAE designations). Strains bearing the YCP50 (ARS-CEN URA3) vector were used in the null allele experiments. These strains were grown in glucose or galactose-sucrose medium as described in Materials and Methods. For each strain, the median frequency of canavanine resistance was determined for 11 independent colonies. In some cases, the median canavanine resistance frequencies calculated in independent experiments are shown. All data are presented relative to the median canavanine resistance frequency (values in boldface type) obtained in strains bearing a 2μm vector containing GAL10-MSH2 (pEAE20). The median range of canavanine resistance in msh2 and msh2Δ strains bearing pEAE20 ranged from 0.5×10^{-10} to 1×10^{-6}. See text for designation of mutant classes.

Table 2. Purification of Msh2p-Msh6p and msh2p-Msh6p complexes

<table>
<thead>
<tr>
<th>Prepn</th>
<th>Protein fraction (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

* Msh2p-Msh6p and the indicated msh2p-Msh6p complexes were purified from BJ5464 cells containing GAL10-MSH6 and GAL10-MSH2 or GAL10-MSH6 and GAL10-msh2 overexpression plasmids as described in Materials and Methods. The starting material for each purification was 0.8 to 1.0 g (wet weight) of cells. Fractions 1 to IV refer to crude extract, PBE94, sDNA cellulose, and PBE94 steps, respectively.
DNA binding assays. DNA binding assays were performed as described previously (1, 32). The standard buffer for the DNA binding assay contained 25 mM Tris (pH 7.5), 2.0 mM MgCl₂, 0.1 mM dithiothreitol (DTT), 0.01 mM EDTA, and 40 μg of BSA per ml. ATP was added to a final concentration of 1.6 mM as indicated. Binding was performed at 30°C for 15 min in a 60-μl reaction, and each reaction mixture contained 16.7 mM γ[^-32]P-ATP at 0.1-3.33 μM unlabeled competitor duplex oligonucleotide, 0 to 0.26 μg of fraction IV of Msh2p-Msh6p or the indicated mutant derivative. The 37-mer homoduplex and +1 oligonucleotide substrates used in this study are described by Alani (1). Following incubation, samples were analyzed by filter binding to KOH-treated nitrocellulose filters (32), using a Hoefer Scientific Instruments FHZ25V filtering unit. Filter binding was performed as described by Chi and Kolodner (9).

RESULTS

Rationale for site-specific mutagenesis. Biochemical characterization of the E. coli MutS, human MSH2-GTBP, and yeast Msh2p-Msh6p complexes revealed that the mismatch binding activity displayed by each of these proteins could be modulated by ATP (1, 11, 22). Protein sequence alignments of bacterial, yeast, and mammalian MutS homologs indicated that these proteins share a highly conserved ATP binding domain (5, 47, 48). The human and yeast MSH2 ATP binding domains, for example, displayed 81% amino acid identity in a 120-amino-acid region (Fig. 1) (12, 29). Biochemical analysis of the Salmonella MutS and S. cerevisiae Msh1p and Msh2p-Msh6p proteins indicated that these proteins displayed similar ATPase activities, and genetic analysis of Salmonella mutS indicated that the ATP binding domain was important for MutS function (1, 10, 17).

Visual inspection of the prokaryotic and eukaryotic MutS homolog amino acid sequence led to the identification of a highly conserved 20-amino-acid helix-turn-helix domain (Fig. 1); this structure was of interest because such domains had been shown to be important for DNA sequence-specific binding in a variety of prokaryotic DNA binding proteins (16, 20, 41, 47, 51). The helix-turn-helix sequence identified in MutS homologs conformed to most of the stereochemical constraints observed in such motifs with one exception: position nine in the MutS consensus sequence was not occupied by a glycine residue (51). A glycine residue in this position is considered important for the formation of the loop that connects the two alpha helices that contact DNA; however, it is important to note that not all proteins that bind DNA through a helix-turn-helix motif contain a glycine at this position (40, 41, 51).

Based on the homologies described above, we chose to study the function of the ATP binding and helix-turn-helix domains in Msh2p by using site-directed mutagenesis. We chose a loss-of-contact approach where highly conserved amino acids were substituted with residues of opposite charge or hydrophobicity. A similar approach was performed on a variety of proteins that displayed the helix-turn-helix motif, with the finding that such substitutions dramatically affected DNA binding but rarely destabilized the protein or caused disruption of its overall protein structure (56, 60). A summary of the amino acid substitutions made in Msh2p is presented in Fig. 1, Table 1, and Materials and Methods. In addition to the helix-turn-helix mutations, a single substitution was made in the ATP binding domain, a glycine-to-aspartic acid change at amino acid 693 in the P loop. This substitution was chosen because similar substitutions in MutS and in other ATP binding proteins resulted in proteins that displayed decreased ATP hydrolysis and/or binding (17, 55). Two msh2 deletion alleles were also used in this analysis; the msh2ΔΔ allele contains a six-amino-acid deletion of MSH2 from amino acids 863 to 868 with the addition of a single histidine residue at the deletion break point, and the msh2ΔΔ600 allele contains a frameshift mutation beginning at amino acid 860 in the MSH2 coding region (1).

msh2 mutant proteins are expressed at wild-type levels. Before initiating the genetic and biochemical analysis of the Msh2p-Msh6p complex described below, we tested whether mutations in the ATP binding and helix-turn-helix domains of MSH2 would alter the stability of the Msh2 polypeptide. Mutant msh2 genes constructed by using site-directed mutagenesis were subcloned into single-copy (ARS-CEN) vectors in which the mutant gene was expressed under the native MSH2 promoter (derivatives of pEAA39) or into high-copy-number (2μm) GAL10 vectors in which MSH2 expression was placed under galactose control (derivatives of pEAE20) (Materials and Methods). Previous studies indicated that galactose induction of yeast strains bearing pEAE20 resulted in overexpression of Msh2p to about 0.5% of total protein (2). A subset of wild-type and site-specific mutants were analyzed in crude lysates or by immunoprecipitation to determine whether these mutations affected Msh2p expression and/or stability. All of the mutant alleles tested (msh2-GD693, msh2-GD855, msh2-VD858, msh2-AE859, msh2-VD862, and msh2-AD872) expressed Msh2p in crude extracts at levels similar to the wild-type level; furthermore, the overexpressed wild-type and mutant msh2 polypeptides that were immunoprecipitated from these extracts appeared similar in size and integrity (data not shown). These results suggested that the site-specific mutations did not cause destabilization of Msh2p. Previous analysis of the msh2ΔΔ and msh2ΔΔ600 alleles showed that they expressed intact mutant polypeptides at wild-type levels (1). In addition, immunoprecipitation studies of yeast strains expressing msh2-GD855, msh2-AE859, msh2-PD865, and msh2-AD872 alleles under the native MSH2 promoter in single-copy vectors revealed that expression of the corresponding polypeptides was also similar to wild-type expression (52a).

Genetic analysis of msh2 alleles. Previous analysis of proteins containing ATP binding and helix-turn-helix domains indicated that mutations in these domains would disrupt the function of these proteins, resulting in a null phenotype. In some cases, overexpression of these mutant proteins resulted in a dominant negative phenotype (17, 55, 56, 60). The msh2 mutant alleles present in either single copy or high copy number were transformed into msh2Δ (EAY252) and wild-type (EAY236) strains to study whether they could complement the mutator phenotype exhibited by msh2Δ mutants and/or confer a dominant negative phenotype in the wild type. The mutator phenotype of msh2 mutant alleles was assessed by using the canavanine resistance assay (3, 49). In this assay, msh2Δ strains exhibited a median canavanine resistance frequency that was approximately 25- to 50-fold higher than that observed in the wild type (Table 1). A summary of the complementation and dominant mutator data is presented in Table 1. Three classes of mutations were identified in this analysis. Class I mutations (msh2-AE859, msh2-VD862, msh2-PD865, msh2-VD869, and msh2-AD872) poorly complemented the msh2Δ phenotype in single copy but showed stronger complementation when expressed in high copy number. These mutations did not display a strong dominant mutator phenotype when expressed in either single copy or high copy number. Class II mutations (msh2-GD693, msh2-GD855, and msh2-VD858) were unable to complement the msh2Δ phenotype in single copy or high copy
number. However, they displayed a strong dominant negative phenotype when expressed in high copy number. Class III mutations (msh2-Δ6 and msh2-Δ60) displayed the msh2Δ null phenotype. They failed to complement a msh2Δ strain and failed to display a dominant negative mutant phenotype when expressed in single copy (when tested) or high copy number (1). Two mutations, msh2-QG863 and msh2-EK866, were not characterized in great detail because they showed neither an effect or only a weak effect on MSH2 function.

To examine the genetic relationship between the classes of msh2 mutations, double-mutant combinations containing class I, II and class II, III mutations were constructed, and the mutant polypeptides were then overexpressed in a wild-type strain (Table 1). A dominant negative phenotype was observed in strains that overexpressed polypeptides bearing two different class II mutations (i.e., msh2-Δ60 and msh2-Δ60). However, overexpression of class II, III and a subset of class I, II mutant proteins did not result in a dominant negative phenotype. Protein expression analysis indicated that the class I, II and class II, III mutant proteins were expressed at levels similar to those observed for strains overexpressing Msh2p (data not shown). These data suggest that class I and class III mutations can disrupt the class II mutant functions that result in a dominant negative phenotype.

Biochemical purification of msh2p-Msh6p complexes. The identification of a helix-turn-helix domain in MSH2, coupled with the genetic analysis shown above, suggested that mutations in the MSH2 helix-turn-helix domain would disrupt mismatch repair by disrupting the mismatch binding specificity of the Msh2p-Msh6p complex. Surprisingly, the biochemical analysis, as described below, suggested that the helix-turn-helix domain was unlikely to be directly involved in mismatch recognition. Based on the genetic analysis described in Table 1, strains bearing GAL10 2μm plasmids that contained MSH6 and representative class I (msh2-AE859, msh2-VD862, msh2-PD865, and msh2-AD872), class II (msh2-Δ60 and msh2-Δ60), and class III (msh2-Δ6) mutations were grown in culture and induced for expression of Msh2p and Msh6p. Extracts prepared from these cells overexpressing Msh6p and Msh2p or mutant msh2p were used to purify mutant complexes by using the procedure used to purify Msh2p-Msh6p (1). As shown in Fig. 2 and Table 2, the protein yields and purity of msh2-Δ60-Msh6p and msh2-Δ60-Msh6p complexes were indistinguishable from those obtained from the purification of Msh2p-Msh6p. Copurification of Msh2p and mutant msh2p appeared weaker in strains overexpressing Msh6p and each of the following polypeptides: msh2-PD865p, msh2-AD872p, and msh2-Δ6p (Fig. 2A) (1). For each of these mutant proteins, the msh2 polypeptide eluted in the PBE94 gradient at a lower NaCl concentration than was observed for Msh6p; subsequently, the majority of msh2p that was loaded onto ssDNA-cellulose flowed through the column. As a result, fraction IV for each of these mutant protein preparations contained predominantly Msh6p polypeptide (Fig. 2A). An example of the first PBE94 chromatography step for this class of proteins is shown for the msh2-Δ60-Msh6p in Fig. 2B. It is important to note that the defect in complex formation observed in the purification of msh2-Δ60-Msh6p was also observed in Msh2p-specific immunoprecipitation reactions involving crude extracts that contained overexpressed msh2-Δ60p and Msh6p (data not shown).

Previously, we showed that Msh2p-Msh6p eluted as a single complex in Superose 6HR filtration with a molecular mass corresponding to approximately 300 kDa (1). To investigate whether mutant msh2 proteins were defective in interacting with Msh6p, we measured the elution profiles of representative classes of msh2p-Msh6p proteins. As shown in Fig. 3, the msh2-Δ60-Msh6p complex displayed an elution profile that was indistinguishable from that of the Msh2p-Msh6p complex. However, the msh2-AE859p–Msh6p complex displayed an elution profile that differed from that of the wild-type complex; only about one-third of the material loaded eluted at a molecular mass of 300 kDa. The remaining material eluted at
a molecular mass of approximately 100 to 140 kDa. This observation, as well as the chromatographic properties of this complex described below, suggested that the lower-molecular-mass fraction represented monomeric forms of msh2-AE859p and Msh6p polypeptides.

While the stoichiometry of msh2p and Msh6p in the msh2-AE859p–Msh6p and msh2-VD682p–Msh6p preparations appeared indistinguishable from that of the Msh2p–Msh6p complex, four observations suggested that these complexes were unstable: (i) gel filtration analysis revealed that only a fraction of the msh2-AE859p–Msh6p complex eluted at a molecular weight consistent with the purification of an intact Msh2p–Msh6p complex (see Fig. 3 and below); (ii) immunoprecipitation reactions involving Msh2p–Msh6p, msh2-AE859p-Msh6p, and msh2-VD682-Msh6p fraction IV preparations indicated that only a small fraction of Msh6p could be coimmunoprecipitated with msh2-AE859p or msh2-VD682p, while an equal fraction could be immunoprecipitated with Msh2p (reference 1 and data not shown); (iii) as shown in Table 2, the yields of the msh2-AE859p–Msh6p and msh2-VD682p–Msh6p complexes were much lower than those observed for the Msh2p-Msh6p, msh2-GD693p–Msh6p, and msh2-GD855p–Msh6p complexes; (iv) in the first PBE94 gradient, a small proportion of both msh2-AE859p and msh2-VD682p polypeptides eluted earlier in the gradient than the Msh6p, and a small proportion of these msh2 polypeptides flowed through the ssDNA-cellulose loading step.

Mismatch binding specificity of mutant complexes. Previously, we showed in filter binding assays that Msh2p-Msh6p could specifically bind to oligonucleotides containing a single-nucleotide insertion (1). We used this assay, which measures the binding affinity of Msh2p-Msh6p to a 32P-labeled +1 duplex oligonucleotide mismatch substrate in the presence or absence of unlabeled +1 and homoduplex competitors, to assess the mismatch binding specificity of the mutant msh2p-Msh6p complexes (1). Previous analysis showed that MutS, Msh2p-Msh6p, and human MSH2-GTBP all displayed an approximately 5- to 15-fold specificity for oligonucleotide DNA substrates containing base pair mismatches compared to homoduplex oligonucleotide substrates (1, 5, 21, 23). Furthermore, theoretical and experimental considerations have demonstrated that the discrimination between two competitors can be determined by measuring the maximal horizontal separation between the binding curves resulting from such titrations (9). This measurement is best made at the maximum concentration of competitor that still allows accurate determination of substrate binding because the horizontal separation between the binding curves is constant at high degrees of competition.

Competition assays shown in Fig. 4 were performed under conditions where 0.26 μg of each type of complex was incubated with stoichiometric amounts of 32P-labeled +1 substrate (1 pmol of Msh2p-Msh6p per pmol of oligonucleotide substrate) plus various amounts of unlabeled competitor. It is important to note that the KD for binding of Msh2p-Msh6p to the +1 substrate could not be determined because it was not possible to achieve equilibrium binding conditions due to the complex mode of binding of Msh2p-Msh6p (1). For this reason, the binding data are presented relative to the binding of wild-type or mutant complexes in the absence of competitor. The percentage of total binding for the wild-type and mutant complexes to the +1 substrate in the absence of competitor is presented in the legend to Fig. 4.

As shown in Fig. 4A to C, for the Msh2p-Msh6p, msh2-GD693p–Msh6p, and msh2-GD855p–Msh6p complexes, approximately fivefold-higher levels of homoduplex competitor were required to achieve the same degree of competition for the 32P-labeled +1 substrate as was observed with the +1 competitor when high levels of competition were achieved. The overall levels of binding of each of the three complexes to the +1 substrate in the absence of competitor were similar, suggesting that the wild-type and msh2-GD693p-Msh6p and msh2-GD855p–Msh6p mutant complexes showed similar DNA binding affinities (data not shown). Taken together, these studies indicated that the msh2-GD693p–Msh6p and msh2-GD855p–Msh6p complexes were proficient in mismatch recognition.

As shown previously, the msh2-Δ6p–Msh6p preparation, which contained mostly Msh6p protein, did not display mismatch binding specificity (1). These data, combined with the results of Msh2p DNA binding studies performed in the absence of Msh6p, suggested that the specificity of mismatch binding for Msh2p and Msh6p proteins was dependent on the ability of these proteins to form an intact complex (1, 2).

Support for this hypothesis came from biochemical analysis of the class I mutant proteins; these proteins were shown by chromatography and by immunoprecipitation analysis to be defective in Msh6p interactions. msh2-AE859p–Msh6p and msh2-VD862p–Msh6p complexes, which displayed moderate subunit interaction defects (Table 2, Fig. 3, and data not shown), also showed weak specificity for mismatch substrates. The msh2-PD865p–Msh6p and msh2-Δ6p–Msh6p preparations, which showed a strong defect in Msh2p-Msh6p interactions, were completely defective for mismatch specificity and showed a slightly higher specificity for homoduplex substrates (reference 1, Fig. 4, and data not shown). Similar conclusions were reached in mismatch binding studies performed with nuclear extracts that had been prepared from cells expressing mutant msh2 proteins in single copy (34, 35). In these studies, MSH2-dependent mismatch binding was observed in nuclear extracts prepared from cells expressing either msh2-GD693p or msh2-GD855p but was not observed in extracts prepared from cells expressing either msh2-AD872p or msh2-Δ6p (34a).

msh2-GD693p–Msh6p and msh2-GD855p–Msh6p complexes bind to mismatches in a reaction that is insensitive to ATP. Previous analysis of the Msh2p-Msh6p complex indicated that mismatch substrate specificity could be abolished if binding reactions were performed in the presence of ATP (1). We tested the effects of ATP on the binding properties of msh2-GD693p–Msh6p and msh2-GD855p–Msh6p complexes by incubating wild-type and mutant complexes in the presence of 32P-labeled +1 and unlabeled +1 and homoduplex competitor in the presence and absence of 1.6 mM ATP. As shown in Fig. 5, mismatch discrimination was not observed for the Msh2p-Msh6p complex when binding reactions were performed in the presence of ATP. However, mismatch discrimination could still be observed for the msh2-GD693p–Msh6p and msh2-GD855p–Msh6p complexes under the same conditions. This finding was strikingly similar to that observed when the nonhydrolyzable ATP analog AMP-PNP was included in Msh2p-Msh6p binding reactions (1).

Previously we showed that the Msh2p-Msh6p complex displayed an ATPase activity (Kcat = 6 μM) that could be inhibited when Msh2p-Msh6p was incubated in the presence of +1 substrate. To test whether the msh2-GD693p–Msh6p, msh2-GD855p–Msh6p, and msh2-AE859p–Msh6p complexes displayed defects in ATPase activity, ATPase assays were performed at various ATP concentrations in the presence and absence of homoduplex and +1 DNA substrates. As shown in Fig. 5D, the ATPase activities of msh2-GD693p–Msh6p and msh2-GD855p–Msh6p were weaker in the presence of homoduplex and +1 substrates than was observed for the Msh2p-Msh6p. Consistent with this finding was the observation that
FIG. 4. Mismatch binding assays performed with Msh2p-Msh6p and class II (msh2-GD693p–Msh6p and msh2-GD855p–Msh6p) and class I (msh2-AE859p–Msh6p, msh2-VD862p–Msh6p, and msh2-D6p–Msh6p) mutant heterodimers. Binding was performed at 30°C in 60-μl reaction mixtures containing 25 mM Tris (pH 7.5), 2 mM MgCl₂, 0.1 mM DTT, 0.01 mM EDTA, 40 μg of BSA per ml, 0.3 μg of Msh2p-Msh6p or msh2p-Msh6p fraction IV, 16.7 nM ³²P-labeled +1 substrate, and the indicated amount of unlabeled +1 and homoduplex competitor substrates. After a 15-min incubation, the amount of ³²P-labeled +1 substrate that remained bound to Msh2p-Msh6p or msh2p-Msh6p was measured by filter binding. Competitive binding reactions involving the indicated complexes are shown. Data for msh2-D6p–Msh6p competition experiments are from reference 1. The percentages of input +1 substrate bound for each of the complexes in the absence of competitor were as follows: Msh2p-Msh6p, 26%; msh2-GD693p–Msh6p, 11%; msh2-GD855p–Msh6p, 14%; msh2-AE859p–Msh6p, 30%; msh2-VD862p–Msh6p, 23%; and msh2-D6p–Msh6p, 19%.
the K_m for ATP hydrolysis of these mutant complexes was approximately twofold higher than that observed for Msh2p-Msh6p (Table 3). The K_m of the msh2-AE859p-Msh6p complex, which displayed defects in both complex formation and mismatch recognition, was approximately fivefold higher than that measured for Msh2p-Msh6p.

DISCUSSION

We performed site-directed mutagenesis of the MSH2 ATP binding and helix-turn-helix domains to determine whether these domains play an important role in Msh2p function. Genetic and biochemical analyses revealed two classes of non-null mutant proteins. Class I proteins, which contained mutations that mapped to the helix-turn-helix domain of MSH2, were defective in forming complexes with Msh6p and also displayed defects in mismatch recognition. Class II proteins, which contained mutations that mapped to either the ATP binding or helix-turn-helix domain, formed complexes with Msh6p that were proficient in mismatch recognition; however, the mismatch specificity of these complexes was not modulated by ATP. Genetic analysis indicated that overexpression of the class II mutant proteins in a wild-type strain resulted in a dominant negative phenotype.

Msh2p-Msh6p complex formation is required for mismatch recognition. Previous analysis indicated that purified Msh2p or fractions highly enriched for Msh6p did not display the mismatch binding specificity observed for the Msh2p-Msh6p complex. Instead, these fractions displayed DNA binding specificities that did not correlate with specificities predicted by in vivo mismatch repair studies (1, 2, 24, 31, 37, 44). In this report, we showed that fractions containing Msh6p and msh2 proteins...
defective in Msh6p interaction (msh2-AE859p and msh2-VD862p) were also defective in mismatch binding. It is important to note that these fractions contained Msh6p and the mutant msh2 proteins in stoichiometries similar to that observed for the wild-type complex (Fig. 2 and 4). These results support a model in which Msh2p-Msh6p complex formation is required for mismatch recognition rather than a model involving the independent binding of Msh2p and Msh6p to base pair mismatches. Double-mutant analyses involving msh2 alleles bearing mutations that displayed a dominant negative phenotype (msh2-GD693, msh2-GD855, and msh2-VD858) and those that displayed a strong defect in complex formation (msh2-ΔD, msh2-AD872, and msh2-PD865) (Table 1) provide further support for this model. The dominant negative phenotype exhibited by the msh2-GD693 mutation could be suppressed by msh2 mutations that caused strong defects in complex formation, suggesting that the dominant negative phenotype reflected the activity of mutant complexes that could bind to base pair mismatches but could not act in subsequent mismatch repair steps (see below). According to this model, suppression of the dominant negative phenotype could be achieved by disrupting complex formation and thus prevent complex binding to the mismatch. We cannot exclude the possibility that mutations that disrupted Msh2p complex formation can also act to disrupt other Msh2p functions such as mismatch recognition; we do not favor this possibility, as our data suggest that the helix-turn-helix domain in Msh2p does not play a role in mismatch recognition (see below).

The helix-turn-helix domain in Msh2p is unlikely to serve as a DNA recognition domain analogous to that found in λ repressor. The identification of a helix-turn-helix domain in the MutS homologs encouraged us to create site-specific mutations in MSH2 with the expectation that mutations in the helix-turn-helix domain would result in a mismatch recognition defect. Our data, however, suggested that the helix-turn-helix domain identified in the mutS homologs was unlikely to play a direct role in mismatch recognition, as described below.

First, mutations in the Msh2p helix-turn-helix domain that would be expected, based on mutational analysis of DNA binding proteins that utilize a helix-turn-helix domain, to cause a disruption of contacts between polypeptide sequences and the DNA phosphate backbone did not result in defects in mismatch recognition (41, 58, 60). For example, overexpression of msh2-GD855p and msh2-VD858p in wild-type strains resulted in a mutator phenotype, consistent with the idea that the mutant msh2 proteins could interact with Msh6p and compete with Msh2p-Msh6p for binding to DNA containing base pair mismatches. Biochemical analysis supported this idea: the msh2-GD855p-Msh6p complex was proficient in mismatch recognition but displayed an ATP binding and/or hydrolysis defect that resulted in a mutant complex that remained bound to a mismatch even in the presence of ATP.

Second, the msh2-AE859p and msh2-VD862p mutations, which caused defects in both Msh2p-Msh6p interactions and mismatch recognition, did not cause a mutator phenotype when overexpressed in wild-type strains but did so in conjunction with the GD693 mutation. The biochemical and genetic analyses presented here and elsewhere (17, 61) are consistent with the idea that the dominant negative msh2 mutations are defective in mismatch repair in steps that occur after mismatch recognition. If we assume that the dominant negative mutator phenotypes conferred by msh2-GD693-AE859 and msh2-GD693-VD862 mutations were the result of defects following mismatch recognition, then it seems unlikely that the AE859 and VD862 mutations directly disrupted contacts between Msh2p-Msh6p and the base pair mismatch, as the double mutant combinations displayed phenotypes consistent with a proclivity in mismatch recognition. An explanation for the dominant negative phenotype observed in msh2-GD693-AE859 and msh2-GD693-VD862 mutants but not in msh2-GD693-PD865 or msh2-GD693-AD872 mutants was that the msh2-AE859p and msh2-VD862p proteins displayed a less severe Msh6p interaction defect than the msh2-AD872p and msh2-PD865p proteins (Fig. 2). Based on these observations, we hypothesized that overexpression of the msh2-GD693-AE859p or msh2-GD693-VD862p complex resulted in a dominant negative phenotype because a large enough proportion of the mutant proteins could complex with Msh6p to bind to base pair mismatches and interfere with Msh2p-Msh6p binding. Unfortunately, we were unable to purify intact msh2-GD693-AE859p-Msh6p or msh2-GD693-VD862p-Msh6p complexes to directly test this hypothesis in vitro. It is important to note that the foregoing hypothesis can also help to explain why some of the class I msh2 alleles displayed a weak dominant negative phenotype when overexpressed if a fraction of the mutant proteins could compete with wild-type Msh2p for binding to Msh6p (Table 1).

The points summarized above argued against the idea that the helix-turn-helix domain in Msh2 acts to directly bind to base pair mismatches in a way that is structurally analogous to that observed for helix-turn-helix domains in λ, Cro, and Cap repressor. However, we cannot formally rule out the possibility that the helix-turn-helix domain in the MutS homologs functions as part of a domain that is directly required for mismatch recognition. Structural analysis of DNA binding proteins such as a repressor and Gal4p indicated that homodimer formation was required for these proteins to display sequence specific recognition; in some cases, mutations that resulted in the loss of dimerization also mapped to the DNA binding domain (8, 41). Based on these findings, it is possible that a mismatch recognition domain could include the Msh2p and Msh6p interaction domains. The isolation of mutant msh2p and msh6p proteins that can form stable complexes with their wild-type counterpart proteins and also display a defect in mismatch recognition could enable us to directly identify a mismatch recognition domain. Alternatively, physical methods, such as UV cross-linking of mismatched DNA to the Msh2p-Msh6p complex could allow us to directly identify amino acid residues required for mismatch recognition.

Model for early steps in mismatch repair. We propose a model in Fig. 6 to explain how the ATP binding and helix-turn-helix domains in Msh2 could function in the Msh2p-Msh6p complex. In this model, the two domains coordinately act in response to ATP binding and/or hydrolysis signals to modulate mismatch recognition of the Msh2p-Msh6p complex. This model, which also proposes that the conformational changes

TABLE 3. \(K_m \) for ATP hydrolysis of Msh2p-Msh6p and mutant derivatives

<table>
<thead>
<tr>
<th>Complex</th>
<th>(K_m(s)) (μM ATP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Msh2p-Msh6p</td>
<td>5.0, 7.4</td>
</tr>
<tr>
<td>msh2-GD693p–Msh6p</td>
<td>13, 13</td>
</tr>
<tr>
<td>msh2-AE859p–Msh6p</td>
<td>21, 38</td>
</tr>
<tr>
<td>msh2-GD855p–Msh6p</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^* \) Determined as described in Materials and Methods. For the Msh2p-Msh6p, msh2-GD693p–Msh6p, and msh2-AE859p–Msh6p complexes, \(K_m \) measurements were made on two independently purified protein preparations; the value determined for each preparation is shown.
Msh2p-Msh6p interaction domain. Mismatch recognition through conformational changes in the possibility that ATP binding and hydrolysis could modulate was also required for Msh2p-Msh6p interactions suggested the ATP binding and hydrolysis were located within a region that Msh6p interaction. The finding that mutations that affected VD862, AE859 consistent with ATP binding/hydrolysis defects, while the the same region of the Msh2 polypeptide sequence. For example, following observations.

(i) msh2 mutations affecting either ATP binding and hydrolysis or Msh2p-Msh6p interactions can be identified within the same region of the Msh2 polypeptide sequence. For example, the GD853 and VD858 mutations resulted in phenotypes consistent with ATP binding/hydrolysis defects, while the AE859, VD862, PD865, and AD872 mutations resulted in defects in Msh6p interaction. The finding that mutations that affected ATP binding and hydrolysis were located within a region that was also required for Msh2p-Msh6p interaction suggested the possibility that ATP binding and hydrolysis could modulate mismatch recognition through conformational changes in the Msh2p-Msh6p interaction domain.

(ii) The K_m for ATP hydrolysis in msh2-AE859p–Msh6p preparations was several fold higher than the K_m observed for either the Msh2p-Msh6p complex or the msh2-GD855p–Msh6p or msh2-GD693p–Msh6p mutant complex. Of these four complexes, only the msh2-AE859p–Msh6p complex displayed a defect in complex stability as well as mismatch recognition. In addition, the mutator phenotype of the msh2-AE859 allele but not the msh2-GD693, msh2-GD855, and msh2-VD858 alleles could be suppressed by overexpression. These findings suggested that the interaction between the two proteins played a critical role in modulating the ATPase activity of the complex. It is important to note that the ATPase activity of the msh2-GD693p–Msh6p complex was not reduced to the extent that would be expected for an amino acid substitu-

DNA helicase activities but not its ability to bind ATP. EMBO J. 7:3263–3269.

