Deafness and Cochlear Fibrocyte Alterations in Mice Deficient for the Inner Ear Protein Otospiralin

Benjamin Delprat,* Jérôme Ruel, Matthieu J. Guitton, Ghyslaine Hamard,† Marc Lenoir, Rémy Pujol, Jean-Luc Puel, Philippe Brabet, and Christian P. Hamel*

INSERM U.583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France

Received 26 June 2004/Returned for modification 16 September 2004/Accepted 10 October 2004

In the cochlea, the mammalian auditory organ, fibrocytes of the mesenchymal nonsensory regions play important roles in cochlear physiology, including the maintenance of ionic and hydric components in the endolymph. Occurrence of human deafness in fibrocyte alterations underlines their critical roles in auditory function. We recently described a novel gene, Otos, which encodes otospiralin, a small protein of unknown function that is produced by the fibrocytes of the cochlea and vestibule. We now have generated mice with deletion of Otos and found that they show moderate deafness, with no frequency predominance. Histopathology revealed a degeneration of type II and IV fibrocytes, while hair cells and stria vascularis appeared normal. Together, these findings suggest that impairment of fibrocytes caused by the loss in otospiralin leads to abnormal cochlear physiology and auditory function. This moderate dysfunction may predispose to age-related hearing loss.

Within the cochlea, the mammalian auditory organ, mesenchymal nonsensory regions (i.e., the spiral limbus proximal to the cochlear axis and the spiral ligament forming the lateral wall of the cochlea) contain fibrocytes that play important roles in cochlear physiology. In the spiral ligament, these fibrocytes form distinct groups according to their location, morphological appearance, and marker expression, which suggest their functional specialization (26). Thus, the circumferentially oriented type III fibrocytes lining the otic capsule and the spindle-shaped type IV fibrocytes lateral to the basilar membrane package the cochlear content and buffer mechanical constraints generated by sound vibrations (8). The type I fibrocytes (behind the stria vascularis), tightly packed with collagen bundles, shape the curvature of the lateral wall. Type II fibrocytes (below the stria vascularis) and type V fibrocytes (above the stria vascularis) are rich in mitochondria and form many interdigitating processes, indicating high metabolic and exchange activities. Type I, II, and V fibrocytes and basal and intermedial cells of the stria vascularis are all interconnected with gap junctions (10). This gap-junctioned network is postulated to be one of several processes that provide potassium to intermediate cells of the stria vascularis (28, 34). This permanent flux of potassium cycling in the cochlea generates the so-called “endocochlear potential” (+85 mV), which gives the main driving force for potassium entry into the sensory hair cell.

Progress in the functional characterization of the cochlear fibrocytes has been made with the discovery of proteins expressed in the nonsensory regions. In accordance with their role in ionic and water transport, fibrocytes express various combinations of ion and water channels, carbonic anhydrases II and III (3, 21, 25, 27, 30), as well as gap junction connexins 26, 30, and 31 (7, 12, 37). The findings that fibrocytes also express extracellular matrix proteins (15, 33, 35) and proteins involved in cell-cell signaling, such as bone and cartilage morphogens (2, 18, 20, 31) and the inner ear-specific cochlin, whose function is unknown (19), indicate a broader role and probably a diversity of specific functions that remain to be elucidated. The fact that the alteration of the fibrocyte integrity leads to pathology is an indication of their importance in inner ear physiology. Thus, mutations in some fibrocyte-expressed genes, such as those coding for the chloride-iodide transporter pendrin (6, 23) and cochlin, are responsible for the Pendred syndrome (5) and DFNA9 (19), respectively, and alteration of fibrocytes is observed in first steps of some age-related hearing loss models (9, 36).

We previously showed that, in rats, cochlear fibrocytes express a novel, 6.4-kDa protein that we called otospiralin because of its expression in spiral structures of the cochlea, i.e., the spiral ligament and spiral limbus (4). Otospiralin expression is largely restricted to the inner ear, with only trace amounts of mRNA detected by reverse transcription-PCR (RT-PCR) in brain (24) and the presence of the protein in the inner ear detected only by Western blotting (4). Today, the function of otospiralin remains elusive, although its conser-
vancy from fish to mammals (13) is in accordance with the presence of hair cell organs (i.e., lateral line and cochlea) and thus with vibration detection. Antisense experiments with guinea pigs showed alteration of the cochlear fibrocytes and degeneration of the hair cells, demonstrating the involvement of otospiralin in auditory function (4). These results, along with the lack of known sequence homology, suggested an important and novel role for otospiralin in inner ear biology. We now report that Otos−/− mice show hearing impairment. Although the organ of Corti was ultrastructurally normal, some fibrocytes of the spiral ligament and spiral limbus were damaged, suggesting that otospiralin is important for the integrity of the cochlear fibrocytes and for normal performance of the cochlea.

MATERIALS AND METHODS

Targeting construction and generation of Otos−/− mice. An 8-kb HindIII-129/X1St genome fragment containing the entire Otos gene was isolated and subcloned into pBluescript SK (Stratagene). Subsequently, 1.5-kb EcoRI-Stul and 5.2-kb Sphl-XhoI fragments flanking the 5′ and 3′ regions of Otos, respectively, were subcloned into pBluescript cut with XbaI and XhoI and modified by the introduction of an EcoRI-Stul-SalI-BglII linker. The LacZneo cassette, containing a nuclear localization signal and neomycin under control of the thymidine kinase (tk) promoter, was fused in frame after nucleotide 10 of the ATG of Otos (exon 2). The polyadenylation sequence from the pPolIIlongneobpA plasmid was added to stabilize the mRNA. Finally, the herpes simplex virus infected cells (HSV-1) was inserted downstream of the 5.2-kb Sphl-XhoI fragment of the mouse DNA logically sequenced.

Embryonic development day 14.1 embryonic stem (ES) cells were transfected with the NotI-linearized plasmid DNA (25 μg) with a Bio-Rad Genepulser (230 V, 500 μF) and were subjected to Geneticin (150 mg/ml active; Life Technologies) and ganciclovir (2 μg/ml). Two properly targeted ES clones out of 5-day-old animals with exon 2. The polyadenylation sequence from the pPolIIlongneobpA plasmid was added to stabilize the mRNA. Finally, the herpes simplex virus infected cells (HSV-1) was inserted downstream of the 5.2-kb Sphl-XhoI fragment of the mouse DNA logically sequenced.

Electrophysiology: gross cochlear and auditory nerve potentials. Cochlear potentials were elicited with tone bursts of a 1-ms rise/fall time and a 9-ms total duration generated by an arbitrary function generator (type 9100R; LeCroy Corporation, Chestnut Ridge, N.Y.). The signals were passed through a programmable attenuator and presented to the ear in a free field via a JBL 075 carphone (JBL, Northridge, Calif.). Ten frequencies were tested (2, 4, 6, 8, 10, 12, 16, 20, 32, and 62 kHz), with increasing levels of 5 dB from a 0- to 100-dB sound pressure level (SPL). The rate of presentation was 10 bursts per s. Cochlear responses were amplified (gain, 2000) by a differential amplifier (Grass P511K, averaged (256 samples), and saved on a Pentium PC computer (100 Mhz; Dell Dimension). The stored potentials could then be digitally filtered with a low-pass setting at 2.5 kHz to measure the compound action potential (CAP) of the auditory nerve, and the summing potential (SP) reflecting the summed intracellular ac receptor potential, mainly generated by the inner hair cells (IHCs) (1). Filtering cochlear potentials with a band-pass filter centered on the frequency of tone burst stimulation allows extraction of the cochlear microphonic (CM) reflecting the summed intracellular ac receptor potential mainly generated by outer hair cells (OHCs) (17).

Statistical analysis of the data. To evaluate the significance of the functional difference between Otos−/− and Otos−/− mice, statistical tests were performed on Student’s t test 2000 for Windows (version 6.1). All comparisons between means were performed with Student’s paired two-tail t tests. The data values are expressed as means ± standard error.

TEM. For transmission electron microscopy (TEM), following the last electrophysiological test, animals were heavily anesthetized and the cochleas were quickly removed and perfused with a freshly prepared fixative containing 3.5% glutaraldehyde in sodium cacodylate buffer (0.1 M, pH 7.4). They were rinsed in sodium cacodylate buffer (0.1 M, pH 7.2) and were rinsed in cacodylate buffer, postfixed in 2% osmic acid for 2 h, rinsed twice again before dehydration, and embedded in Spurr resin at 70°C. Blocks were trimmed to separate the different cochlear coils and remounted for transverse sections. Semithin sections were examined in Nomarski optics before cutting of thin sections (80 to 100 nm) with a Leica-Reichert ultra-microtome. Grids, counterstained with uranyl acetate and lead citrate, were observed with a transmission electron microscope (Hitatchi H600). Three series of sections were taken from each block (two blocks per coil) so as to thoroughly examine at least six different levels of the organ of Corti per cochlea.

SEM. For scanning electron microscopy (SEM), after decapsulation of the animal under deep anesthesia (pentobarbital, 50 mg/kg), cochleas were removed from the temporal bone and perfused with a fixative solution of 3.5% glutaraldehyde in 0.1 M, pH 7.3 phosphate buffer and then immerse in the same fixative solution for 2 h. Then, the outer capsule was dissected out. The stria vascularis and the tectorial and Reissner membranes were removed. After being rinsed in the phosphate buffer, the samples were dehydrated in a graded series of ethanol (30 to 100%), critical point dried in CO2, coated with gold palladium, and observed with a Hitatchi S4000 microscope.

Antibody production. The peptide corresponding to amino acids 22 to 33 at the N terminus of the peptide signal-cleaved mouse otospiralin (NH2-KPMPEEE ADPHTCQ-COOH) was coupled to keyhole limpet hemocyanin and injected into rabbits for antiseraum production (Eurogentec, Seraing, Belgium). Anti-serum SE3950 was obtained, and its specificity was checked by immunoblot analysis using the preimmune serum as a negative control.

Western blotting. Tissues were harvested in cold PBS and homogenized in sample buffer (11), and the lysate was centrifuged to remove detergent-insoluble material and separated by 16.5% polyacrylamide sodium dodecyl sulfate-polyacrylamide gel electrophoresis in 0.1% sodium dodecyl sulfate (SDS). After gel electrophoresis, proteins were transferred electrophoretically to nitrocellulose membranes. Blots were incubated with SE3950 antisotopolin antibody diluted at 1/1,000 according to Towbin et al. (32) and revealed by chemiluminescence using a peroxidase-conjugated secondary antibody (Boehringer Mannheim, Mannheim, Germany).
RESULTS

Targeted disruption of the Otos gene. A λ phage containing the entire mouse Otos gene was isolated by screening a λ FIX II genomic DNA library derived from a 129/X1SvJ mouse strain. The restriction enzyme map was established (Fig. 1a). We constructed a vector by replacing most of the Otos coding sequence, including part of exon 2 and exons 3 and 4, with a neomycin-β-galactosidase (β-Gal) cassette. After electroporation into ES cells, two homologous recombinants were identified by PCR and confirmed by Southern hybridization using two probes, including one outside the vector (Fig. 1b). Both ES clones were used to generate chimeric mice by injection into mouse blastocysts. The chimeras were mated to C57BL/6N mice, and germ line transmission was confirmed by PCR analysis of tail DNA from F1 progeny. Mating of heterozygous male and female mice generated F2 progeny with the three genotypes in normal proportions (25% homozygous mutant, 51% heterozygous, and 24% wild-type mice) indicating that the absence of otospiralin is not embryonic lethal. The absence of otospiralin expression in the F2 homozygous mutant mice was confirmed by RT-PCR (Fig. 1c) and Western blotting (Fig. 1d). Otos−/− mice exhibited neither growth development nor gross anatomy differences compared with their Otos+/+ and Otos+−/− counterparts.

Otospiralin is expressed in fibrocytes of the inner ear. To assess otospiralin expression in the inner ear in mice, we processed whole-mount Otos+−/− cochleae for β-galactosidase activity. β-Gal staining was confined to fibrocytes of the spiral prominence in the spiral ligament and to those of the apical and basal borders in the limbus (Fig. 2a). Consistent with this staining, the immunofluorescence signal was detected in the fibrocytes of the spiral limbus and spiral ligament, although to a larger extent (Fig. 2b), suggesting that the immunofluorescence test was more sensitive than the β-Gal staining or a certain amount of the protein is transported at distance from its synthesis site. Overall, these results indicated that activation of the otospiralin promoter and production of the protein itself did occur in fibrocytes of the inner ear. By Western blotting, the protein was found only in the cochlea and not in other tissues, including brain, cerebellum, spinal cord, eye, muscle, heart, liver, kidney, spleen, testis, lung, and thyroid (not shown), suggesting that otospiralin could exert a specific function in the inner ear.

Otospiralin−/− mice display hearing impairment. To evaluate whether otospiralin is required for hearing, we performed a CAP audiogram of F2 and F3 Otos−/− mice on a mixed (50:50) 129 Olahsd:C57BL/6N genetic background. All mice were less than 3 months old to avoid the age-related hearing loss that occurs in C57BL/6N and 129 Olahsd-related strains (39). Otos−/− mice had a normal Preyer reflex and no sign of vestibular dysfunction (nystagmus or dizziness). However, comparison with wild-type mice revealed that CAP thresholds in Otos−/− mice were significantly (P < 0.001) increased over the entire frequency range (2 to 32 kHz). The mean ± standard error averages of CAP thresholds across frequency were 28.13 ± 3.97 dB (n = 10) in wild-type Otos+/+ mice versus 47.04 ± 4.65 dB (n = 10) in Otos−/− mice. We further analyzed the CAP and CM amplitude and N1 latency at 10 kHz. A clear reduction of CAP and CM amplitude (Fig. 3b and d; n = 10) and a slight increase of N1 latency (Fig. 3c; n = 10) were observed at all intensities of tone-burst stimulation. To facilitate comparison between wild-type and Otos−/− mice, the CAP and CM amplitudes were combined across intensities (100 to 40 dB) to provide an overall mean for each group of mice expressed as the percentage of the wild-type mean value. Based on this calculation, Otos−/− mice showed reductions of 59.5 and 78.5% for CAP and CM amplitude, respectively. Altogether, these results show a global alteration in signal transmission in Otos−/− mice.
Organ of Corti and stria vascularis are normal in *Otos*−/− mice, but fibrocytes are damaged. Cochleas from 6-week-old *Otos*−/−, *Otos*+/− (not shown), and *Otos*+/+ mice were examined by SEM (four cochleas taken from four individuals in each group) and TEM (three cochleas taken from three individuals in each group). The cellular architecture of the organ of Corti in *Otos*+/− and *Otos*−/− mice was normal (Fig. 4a and c), with a single row of IHCs and three rows of OHCs separated by the pillar cells. We observed in both groups a few missing hair cells scattered throughout the cochlear spiral, which had no pathological significance. On both types of hair cells, the structure and orientation of the hair bundles were unaffected by the absence of *Otos*. Similarly, the stria vascularis was morphologically normal in *Otos*−/− mice, with deep infoldings of the basal plasma membrane, numerous mitochondria in the marginal cells, and normal-looking intermediate and basal cells (Fig. 4b and d).

However, some fibrocytes of the spiral limbus and spiral ligament were damaged (Fig. 5). While *Otos*−/− type II fibrocytes (within and nearby the spiral prominence) had, like their wild-type counterparts, numerous infoldings of the cell membrane, they showed shrinkage of their cytoplasm with concomitant larger extracellular spaces around them than those of wild-type animals (Fig. 6a and b). In addition, their cytoplasm exhibited vacuoles that looked empty to the electron rays. Type IV fibrocytes (in the triangular space inferior to the basilar crest) also had larger extracellular spaces but did not show large vacuoles. These extended extracellular spaces were also observed in some fibrocytes of the spiral limbus (Fig. 6c and d). In contrast, type I and III fibrocytes were present and exhibited normal structure (not shown).

DISCUSSION

To get insight into the role of otospiralin in the inner ear, we have generated a mouse model in which most of the coding sequence was deleted. *Otos*−/− mice develop normally and do not exhibit severe hearing loss or vestibular syndrome. Nevertheless, functional investigations revealed that there is an auditory defect with no frequency predominance. This defect is not linked to ultrastructural damage of hair cells or stria vascularis but to the alteration of the fibrocytes in the mesenchymal parts of the cochlea.

The auditory impairment observed in the *Otos*−/− mice is clearly different from the severe deafness seen in the guinea pig cochleas treated with otospiralin antisense oligonucleotides (4). In the latter experiment, hair cells were lost while they remained intact in the *Otos*−/− mice. Such a difference may rely upon long-term adaptation of the cochlea to the congenital absence of otospiralin in the *Otos*−/− mice or, alternatively, be linked to the fact that oligonucleotides in antisense experiments may have targeted, in addition to otospiralin, another factor important for hair cell survival. Nonetheless, damage to the mesenchymal fibrocytes of the spiral ligament and spiral limbus, which was the only histological abnormality observed in the *Otos*−/− mice, was strictly identical to that observed in guinea pig cochleas treated with otospiralin antisense oligonu-
cleotides (4), indicating that this is a characteristic feature of the lack of otospiralin.

The fact that cytoplasmic alterations predominate in those fibrocytes which produce otospiralin (i.e., type II in spiral ligament and some fibrocytes of spiral limbus, as seen from the otospiralin promoter activity) suggests that the lack of otospiralin exerts a direct effect on fibrocytes themselves. There are examples of animal models in which fibrocyte degeneration is due to a molecular defect involving primarily fibrocytes with relatively few structural alterations in the neurosensory epithelium (14, 16, 38). These fibrocyte alterations may lead to severe auditory impairment, which has been attributed to important modifications of the production and composition of the endolymph. In the Slc12a2−/− mice (14), which are deficient for the Na+/K−/2Cl− cotransporter that is normally expressed in type II and IV fibrocytes and stria vascularis, there is a collapse of the Reissner membrane, indicating that the volume of the endolymph is considerably decreased, presumably because of insufficient K+ secretion. In mice deficient for the Pou transcription factor Pou3f4, which in wild-type animals is only expressed in fibrocytes of the spiral ligament and spiral limbus (16, 38), there is remarkable damage to type II and IV fibrocytes, while the organ of Corti remains normal. As in Otos−/− mice, fibrocytes show larger extracellular spaces. In addition, in the Pou3f4−/− model, scarcity of mitochondria and of mem-
brane infoldings in fibrocytes suggests a diminished metabolism. These mice are severely deaf, as are human DFN3 patients with mutation in the BRN4 gene. Although it is not known what function of the fibrocytes is impaired, it is likely that the production of some component of the endolymph is also abnormal, since there is a dramatic reduction in endocochlear potential. In Otos/−/− fibrocytes, we observed changes that more or less resemble those of both Slc12a2−/− and Pouf3/−/− mouse models, but it is clear that the moderate auditory dysfunction found in Otos/−/− mice implies a more subtle pathogenic mechanism than that in play in Slc12a2−/− and Pouf3/−/− mice.

Pathological processes with moderate functional impairment are age-related auditory loss (presbyacusis). Mouse models of presbyacusis have shown IHC and OHC loss with neuronal loss. This awaits backcrossing of Otos/−/− mice that occurs in C57BL/6N and 129 Olahsd-related strains. In conclusion, we have shown that the lack of otospiralin leads to fibrocyte alterations and hearing impairment, enhancing the importance of the nonsensory regions of the cochlea in auditory function.

ACKNOWLEDGMENTS

We thank Harold Cremer (CNRS UMR 6156, IBDM, Marseille, France) for providing ES cells and Marie-Christine Simmler (INSERM U1057, Paris, France) for giving us the LacZneo cassette. Blastocyst injection and chimeras were obtained at the Plateforme de Recombinaison Homologue in the Cochin Institute (INSERM). Animals were bred by Mireille Gallego. SEM and TEM were performed at CRIC (Centre Régional d’Imagerie Cellulaire) with the technical support of Chantal Cazevelle and Florence Tribilie. We thank Jean-Louis Pasquier for artwork.

This study was supported by grants from the Institut de la Santé et de la Recherche Médicale (INSERM). B.D. has a fellowship from Caisse d’Epargne, Montpellier, and Région Languedoc-Roussillon, France.

REFERENCES

