mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling

Louis-Andre Julien, Audrey Carriere, Julie Moreau, and Philippe P. Roux*

Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada

Received 7 May 2009/Returned for modification 11 July 2009/Accepted 27 November 2009

The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. While mTOR complex 1 (mTORC1) regulates mRNA translation and ribosome biogenesis, mTORC2 plays an important role in the phosphorylation and subsequent activation of Akt. Interestingly, mTORC1 negatively regulates Akt activation, but whether mTORC1 signaling directly targets mTORC2 remains unknown. Here we show that growth factors promote the phosphorylation of Rictor (rapamycin-insensitive companion of mTOR), an essential subunit of mTORC2. We found that Rictor phosphorylation requires mTORC1 activity and, more specifically, the p70 ribosomal S6 kinase 1 (S6K1). We identified several phosphorylation sites in Rictor and found that Thr1135 is directly phosphorylated by S6K1 in vitro and in vivo, in a rapamycin-sensitive manner. Phosphorylation of Rictor on Thr1135 did not affect mTORC2 assembly, kinase activity, or cellular localization. However, cells expressing a Rictor T1135A mutant were found to have increased mTORC2-dependent phosphorylation of Akt. In addition, phosphorylation of the Akt substrates FoxO1/3a and glycogen synthase kinase 3α/β (GSK3α/β) was found to be increased in these cells, indicating that S6K1-mediated phosphorylation of Rictor inhibits mTORC2 and Akt signaling. Together, our results uncover a new regulatory link between the two mTOR complexes, whereby Rictor integrates mTORC1-dependent signaling.

The mammalian target of rapamycin (mTOR) is an evolutionarily conserved phosphatidylinositol 3-kinase (PI3K)-related Ser/Thr kinase that integrates signals from nutrients, energy sufficiency, and growth factors to regulate cell growth as well as organ and body size in a variety of organisms (reviewed in references 4, 38, 49, and 77). mTOR was discovered as the molecular target of rapamycin, an antifungal agent used clinically as an immunosuppressant and more recently as an anticancer drug (5, 20). Recent evidence indicates that deregulation of the mTOR pathway occurs in a majority of human cancers (12, 18, 25, 46), suggesting that rapamycin analogs may be potent antineoplastic therapeutic agents.

mTOR forms two distinct multiprotein complexes, the rapamycin-sensitive and -insensitive mTOR complexes 1 and 2 (mTORC1 and mTORC2), respectively (6, 47). In cells, rapamycin interacts with FKBP12 and targets the FKBP12-rapamycin binding (FRB) domain of mTORC1, thereby inhibiting some of its function (13, 40, 66). mTORC1 is comprised of the mTOR catalytic subunit and four associated proteins, Raptor (regulatory associated protein of mTOR), mLST8 (mammalian lethal with sec13 protein 8), PRAS40 (proline-rich Akt kinase-interacting protein 1), mLST8, PRR5 (proline-rich region 5), and Deptor (28, 43, 44, 47, 59, 73, 74). The small GTPase Rheb (Ras homolog enriched in brain) is a key upstream activator of mTORC1 that is negatively regulated by the tuberous sclerosis complex 1 (TSC1)/TSC2 GTPase-activating protein complex (reviewed in reference 35). mTORC1 is activated by PI3K and Ras signaling through direct phosphorylation and inactivation of TSC2 by Akt, extracellular signal-regulated kinase (ERK), and p90 ribosomal protein S6 kinase (RSK) (11, 37, 48, 53, 63). mTORC1 activity is also regulated at the level of Raptor. Whereas low cellular energy levels negatively regulate mTORC1 activity through phosphorylation of Raptor by AMP-activated protein kinase (AMPK) (27), growth signaling pathways activating the Ras/ERK pathway positively regulate mTORC1 activity through direct phosphorylation of Raptor by RSK (10). More recent evidence has also shown that mTOR itself positively regulates mTORC1 activity by directly phosphorylating Raptor at proline-directed sites (20a, 75). Countertransport of amino acids (55) and amino acid signaling through the Rag GTPases were also shown to regulate mTORC1 activity (45, 65). When activated, mTORC1 phosphorylates two main regulators of mRNA translation and ribosome biogenesis, the AGC (protein kinase A, G, and C) family kinase p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and thus stimulates protein synthesis and cellular growth (50, 60).

The second mTOR complex, mTORC2, is comprised of mTOR, Rictor (rapamycin-insensitive companion of mTOR), mSin1 (mammalian stress-activated mitogen-activated protein kinase-interacting protein 1), mLST8, PRR5 (proline-rich region 5), and Deptor (21, 39, 58, 59, 66, 76, 79). Rapamycin does not directly target and inhibit mTORC2, but long-term treatment with this drug was shown to correlate with mTORC2 disassembly and cytoplasmic accumulation of Rictor (21, 39, 62, 79). Whereas mTORC1 regulates hydrophobic motif phosphorylation of S6K1, mTORC2 has been shown to phosphorylate other members of the AGC family of kinases. Biochemical and genetic evidence has demonstrated that mTORC2 phosphorylates Akt at Ser473 (26, 39, 68, 70), thereby contrib-
htagged Rictor was amplified by PCR using primers 5′-TTG GAT CAT CAC AGA AAC AAC TGT CAT CGT AAA AT and 5′-TTG AAT TCT CAC GGG TCG AGT TAT TCT TGT GGC TAT G. Recombinant fragments of human wild-type Rictor or the T1135A mutant in frame with GST, corresponding to amino acids (aa) 1115 to 1160, were expressed in BL-21 cells and purified using glutathione-Sepharose beads (GE Healthcare, Piscataway, NJ).

Antibodies. Antibodies targeted against RXXRXXpS/T consensus sequences, Rictor (for immunoblotting), S6, phospho-S6 (S240/244), Akt, phospho-Akt (S473), S6K1 and phospho-S6K1 (T389), phosphoglycogen synthase kinase 3β (phospho-GSK3β (S21/9), FoxO1/3a, and phospho-FoxO1/3a (T24/T32) were purchased from Cell Signaling Technologies (Beverly, MA). Antibodies targeted against phospho-NDRG1 (phospho-N-myc downstream-regulated gene 1) (Thr346/S356/366) were purchased from KinaseSource (Dundee, United Kingdom). The Rictor antibodies used for immunoprecipitation were purchased from Bethyl Laboratories (Montgomery, TX). Anti-HA, -myc, -Flag, and phospho-ERK1/2 monoclonal antibodies were purchased from Sigma-Aldrich (Oakville, Ontario, Canada). The phospho-RSK (Ser380) antibody was purchased from R&D Systems (Minneapolis, MN). The rabbit phospho-Rictor (T1135) polyclonal antibody was generated and purified in collaboration with Genscript (Piscataway, NJ). All secondary horse-radish peroxidase (HRP)-conjugated antibodies used for immunoblotting were purchased from Chemicon (Temecula, CA).

Cell culture and transfection. HEK293, HeLa, and MEF cells were maintained at 37°C in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/liter glucose supplemented with 10% fetal bovine serum (FBS) and antibiotics. The p53−/− and p53+/− TSC2−/− MEFs were a generous gift from David Kwiatkowski (Brigham and Women’s Hospital, Boston, MA). HEK293 stable cell lines were generated using phosphorretroviral particles. Primary cultures of cells were selected using puromycin (2 μg/ml). HEK293 cells were transfected by calcium phosphate precipitation as previously described (64). Cells were grown for 24 h after transfection and serum starved using serum-free DMEM where indicated for 16 to 18 h. Starved cells were pretreated with Wortmannin (100 nM), U0126 (10 μM), rapamycin (100 nM), or PI-103 (1 μM) (Biomol, Plymouth Meeting, PA) and stimulated with serum (10%), insulin (25 to 100 μM), epidermal growth factor (EGF) (25 to 50 ng/ml), or phorbol 12-myristate 13-acetate (PMA) (10−7 M), or serum-starved cells and purified using glutathione-Sepharose beads (GE Healthcare, Piscataway, NJ).

Flow cytometry. For analysis of Akt phosphorylation using fluorescence-activated cell sorting (FACS), 2.5 × 106 cells stably expressing HA-tagged wild-type Rictor or the T1135A and T1135D mutants were seeded in 100-mm dishes, grown in 10% FBS for 4 h, serum-starved overnight, and stimulated with EGF (25 ng/ml) for 5 min. Cells were harvested in phosphate-buffered saline (PBS)-EDTA (1 mM), rinsed by centrifugation, and fixed in 3.7% formaldehyde for 10 min at 37°C. The fixative was removed by centrifugation and cells permeabilized in 90% methanol for 30 min at 4°C. Cells were washed thrice and blocked in washing buffer (PBS-bovine serum albumin [BSA] [0.5%]) for 10 min at room temperature. Cells were incubated for 1 h with anti-HA monoclonal antibody (Abcam) or anti-phospho-Akt (S473) (Cell Signaling) antibodies diluted in washing buffer according to the manufacturer’s recommendation. Cells were washed twice and incubated for 30 min with R-phycocerythrin (PE)-conjugated anti-rabbit (Invitrogen) and fluorescein isothiocyanate (FITC)-conjugated AffiniPure anti-mouse (Jackson ImmunoResearch Laboratories, Baltimore, MD) secondary antibodies diluted in washing buffer according to the manufacturer’s recommendation. Cells were washed thrice, resuspended in PBS, and processed on a BD FACS Canto II cytometer, and data were analyzed using BD FACS Diva software (BD Bioscience). Briefly, single HA-expressing cells were sorted and analyzed for phospho-Akt (S473) immunoreactivity. The percentage of cells positive for phospho-Akt (S473) was quantified for each sample and divided by the percentage of positive cells in stimulated HA-tagged Rictor T1135A-expressing cells. All values were divided by unstimulated empty-vector-transfected cells so that the value for unstimulated empty-vector-transfected cells was 1. Results are representative of at least three independent experiments and are expressed as the mean ± standard deviation (SD) for duplicates.

RNA interference (RNAi) and viral infections. For small interfering RNA (siRNA)-mediated knockdown of S6K1 and Raptor, validated 21-nucleotide siRNAs with symmetrical two nucleotide overhangs were obtained from Qiagen (Valencia, CA). Dicer-substrate siRNA duplexes against the 3′ untranslated region (3′UTR) of human Rictor (HSC.RNAI.N152756.10.4) were purchased from Integrated DNA Technologies (Corvalis, OR). HEK293 cells were transfected using calcium phosphate and 50 nM siRNA per 35-mm dish. Transfection efficiency was determined to be greater than 90% using a fluorescently labeled mock siRNA. At 24 hours following transfection, cells were serum starved, washed, resuspended in PBS, and processed on a BD FACS Canto II cytometer, and data were analyzed using BD FACS Diva software (BD Bioscience). Briefly, single HA-expressing cells were sorted and analyzed for phospho-Akt (S473) immunoreactivity. The percentage of cells positive for phospho-Akt (S473) was quantified for each sample and divided by the percentage of positive cells in stimulated HA-tagged Rictor T1135A-expressing cells. All values were divided by unstimulated empty-vector-transfected cells so that the value for unstimulated empty-vector-transfected cells was 1. Results are representative of at least three independent experiments and are expressed as the mean ± standard deviation (SD) for duplicates.
starved for 16 to 18 h and stimulated with growth factors. For short hairpin RNA (shRNA)-mediated knockdown of endogenous S6K1, lentiviruses were produced using the pLKO.1 vector system from the MISSION TRC shRNA library. Cells were infected in the presence of 4 μg/ml Polybrene, and 3 days after viral infection, cells were treated and selected with 2 μg/ml puromycin. shRNA constructs were obtained from Sigma-Aldrich (shRNA1, TRCN0000003158; shRNA2, TRCN0000003169). Retroviruses were produced using the pBabe-puro vector system, to overexpress ectopic murine wild-type Rictor or the T1135A and T1135D mutants. Two days after viral infection, positive pools were selected in 2 μg/ml puromycin.

Immunoprecipitations and immunoblotting. Cell lysates were prepared as previously described (63). Briefly, cells were washed with ice-cold PBS and lysed in 10 mM K₃PO₄, 1 mM EDTA, 5 mM EGTA, 10 mM MgCl₂, 50 mM β-glycerophosphate, 0.5% Nonidet P-40, 0.1% deoxycholic acid, 1 mM sodium orthovanadate (Na₅VO₃), 1 mM phenylmethylsulfonyl fluoride, and a Complete protease inhibitor cocktail (Roche). For immunoprecipitations, cell lysates were incubated with the indicated antibody or control IgG (Santa Cruz Biotechnology, Santa Cruz, CA) for 2 h, followed by 1 h of incubation with protein A-Sepharose CL-4B beads (GE Healthcare). Unless used for kinase assays, immunoprecipitates were washed thrice in lysis buffer and beads were eluted and boiled in 2× reducing sample buffer (5× is 60 mM Tris-HEC [pH 6.8], 25% glycerol, 2% SDS, 14.4 mM 2-mercaptoethanol, and 0.1% bromphenol blue) and loaded onto 12% SDS-PAGE gels. Resolved proteins were transferred onto polyvinylidene difluoride (PVDF) membranes for immunoblotting. For mTOR coimmunoprecipitation assays, the same procedure was followed, except cells were lysed in CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) buffer (40 mM HEPES [pH 7.4], 2 mM EDTA, 10 mM sodium pyrophosphate, 10 mM β-glycerophosphate, 0.3% CHAPS). Beads from immunoprecipitations were washed thrice in CHAPS buffer and eluted in reducing sample buffer.

Protein phosphotransferase assays. For S6K1 assays, beads from immunoprecipitations were washed twice in lysis buffer and twice in kinase buffer (25 mM Tris-HEC [pH 7.4], 10 mM MgCl₂, 5 mM β-glycerophosphate). Kinase assays were performed with bacterially purified recombinant GST-Rictor fusion proteins (3 μg per assay) or immunopurified full-length HA-tagged Rictor as substrates, under linear assay conditions. Assays were performed for 10 min at 30°C in kinase buffer supplemented with 1 μCi [γ-32P]ATP. For mTORC2 kinase assays, endogenous or transfected HA-tagged Rictor was immunoprecipitated from cells lysed in CHAPS buffer containing 120 mM NaCl, as previously described (23). Immunoprecipitates were washed thrice in lysis buffer and incubated for 30 min at 30°C with 500 ng purified GST-Akt (kinase inactive) in mTORC2 kinase buffer (10 mM HEPES [pH 7.4], 100 μM ATP, 25 mM β-glycerophosphate, 10 mM MgCl₂). All samples were subjected to SDS-PAGE, and incorporation of cold or radioactive [32P]Phosphate was determined by immunoblotting or autoradiography using a Fuji PhosphorImager with Multi-Gauge software. The data presented in immunoblotting represented an average of at least three independent experiments.

Proliferation assays. For proliferation assays, 3 × 10³ cells expressing wild-type Rictor or the T1135A or T1135D mutant were seeded in 96-well plates. Cells were grown at 37°C in DMEM with 4.5 g/liter glucose supplemented with 5% FBS and antibiotics. The relative number of viable cells was measured every 24 h during five consecutive days using a nonradioactive cell proliferation assay from Promega (Madison, WI). Briefly, MTS [3-(4,5-dimethylthiazol-2-yl)-5-(carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] and an electron coupling reagent (phenazine methosulfate) were added to each well for a 4-h incubation according to the manufacturer’s recommendation. Absorbance was measured at 490 nm using a Tecan GENios Plus microplate reader, and results displayed represent the mean of triplicates ± standard error (SE).

Confocal microscopy. For immunofluorescence analyses, 3.5 × 10⁶ cells were seeded in six-well plates and growing coverslips. Cells were stimulated as indicated, washed in PBS, and fixed in 3.7% formaldehyde for 20 min at room temperature. Cells were washed with 5 min in PBS and permeabilized for 1 h in PBS containing 0.2% Triton X-100 and 2 mg/ml BSA. Cells were washed thrice in washing buffer (0.04% Triton X-100 and 2 mg/ml BSA in PBS) and incubated overnight with anti-HA (HA.11) antibodies diluted in washing buffer. Cells were washed thrice and incubated 2 h with Alexa 488-conjugated anti-mouse (Invitrogen) secondary antibodies diluted in washing buffer. Cells were washed thrice and stained with Alexa 488-conjugated anti-rabbit (Jackson) secondary antibody (1:2000 dilution). Coverslips were mounted on slides, and images from single confocal sections (0.7 μm) were acquired with a Zeiss LSM 510 Meta laser scanning confocal microscope using a Plan APOCHROMAT 100× objective. All images were acquired using identical parameters.

RESULTS

Identification of Rictor as a target of mTORC1 signaling. To analyze the possible regulation of Rictor through phosphorylation, we used an antibody that recognizes the phosphorylated consensus motif Arg/Lys-X-Arg/Lys-X-pSer/Thr (RXRXXpS/T, where X is any amino acid), which is often found in substrates of AGC kinases, including RSK, Akt, and S6K1 (3). This approach was successfully used by several groups to identify new substrates for these basophilic kinases (1, 10, 42, 53, 63). HEK293 cells transfected with HA-tagged Rictor were stimulated with different agonists and inhibitors (Fig. 1A), and immunoprecipitated Rictor was analyzed for phosphorylation by immunoblotting with the anti-RXRXXpS/T antibody. Using this method, we found that treatment of serum-starved cells with the phorbol ester PMA, epidermal growth factor (EGF), serum, and insulin strongly stimulated Rictor phosphorylation on RXRXXpS/T consensus sites (Fig. 1B). We observed phosphorylation of Rictor irrespective of whether the Ras/ERK or PI3K/Akt pathway was stimulated, as shown by the phosphorylation of ERK1/2 (Thr202/Tyr204) or Akt (Ser473), suggesting that these pathways may converge on the same downstream Rictor kinase. Both Ras/ERK and PI3K/Akt pathways promote mTORC1 activation through inactivation of the TSC1/2 tumor suppressor complex (11, 37, 48, 53, 63), indicating that Rictor phosphorylation may occur in an mTORC1-dependent manner.

To test this, we used wortmannin and U0126 to specifically inhibit PI3K- and MEK1/2-dependent signaling, respectively. While treatment of cells with wortmannin completely inhibited Rictor phosphorylation induced by insulin stimulation (Fig. 1C), we found that U0126 treatment strongly inhibited Rictor phosphorylation by PMA (Fig. 1D). Importantly, Rictor phosphorylation at RXRXXpS/T consensus sites was completely abrogated when cells were treated with the mTORC1 inhibitor rapamycin prior to insulin (Fig. 1C) or PMA (Fig. 1D) stimulation, suggesting the involvement of a basophilic kinase downstream of mTORC1. These results were confirmed in two different cell lines (HEK293 and HeLa) by looking at the phosphorylation status of endogenous Rictor (Fig. 1E and F). Together, these findings demonstrate that Rictor is targeted for phosphorylation on RXRXXpS/T consensus sites in an mTORC1-dependent manner, suggesting the involvement of the AGC family kinase S6K1 (Fig. 1A).

S6K1 is required for Rictor phosphorylation in cells. To determine the role of S6K1 in Rictor phosphorylation, we used small interfering RNA (siRNA)-mediated knockdown of S6K1 to specifically reduce expression of S6K1 in HEK293 cells. We found that siRNA-mediated knockdown of S6K1 resulted in complete inhibition of Rictor phosphorylation on RXRXXpS/T consensus sites (Fig. 2A), demonstrating that endogenous S6K1 me-
diates Rictor phosphorylation in response to insulin and PMA stimulation. The role of endogenous S6K1 was also determined by generating stable cell lines expressing either a short hairpin RNA (shRNA) against a different target sequence of S6K1 or a scrambled shRNA control (Fig. 2B). Using this approach, we found that stable knockdown of S6K1 expression resulted in a robust inhibition of Rictor phosphorylation upon insulin stimulation, indicating that S6K1 is essential for Rictor phosphorylation following mTORC1 activation.

To further assess the role of S6K1 in Rictor phosphorylation in cells, Rictor was transfected with wild-type S6K1 or constitutively activated (F5A-T389E-R3A) and kinase-inactive (K100R) mutants of S6K1 (Fig. 3A). Compared to control vector, expression of wild-type S6K1 robustly increased Rictor phosphorylation in response to insulin stimulation (Fig. 3B), suggesting that Rictor is an S6K1 substrate in cells. Expression of constitutively activated S6K1 (CA) resulted in robust Rictor phosphorylation even in the absence of serum and insulin stimulation. This increase was insensitive to rapamycin treatment (Fig. 3C), consistent with the idea that S6K1 is sufficient to stimulate Rictor phosphorylation in cells. S6K1 phosphomembrane transferase activity was found to be required for Rictor phosphorylation, as kinase-inactive S6K1 (KD) did not increase Rictor phosphorylation above the level already stimulated by endogenous S6K1 activity (Fig. 3B). In fact, kinase-inactive S6K1 was found to partly reduce Rictor phosphorylation in cells (to the same extent as the observed reduction in S6 phosphorylation), suggesting that this inactive form of S6K1 partly acts as a dominant negative allele. Together, these findings strongly support a role for S6K1 in the phosphorylation of Rictor in vivo.

To determine whether Rheb-mediated activation of mTORC1 was sufficient to stimulate Rictor phosphorylation in the absence of growth factors and serum, HEK293 cells were transfected with the small GTPase Rheb and serum starved overnight. Similar to the case for cells expressing constitutively activated S6K1, we found that transient overexpression of Rheb strongly stimulated both S6 and Rictor phosphorylation in the absence of serum and growth factors (Fig. 3D). Furthermore, Rheb-mediated Rictor phosphorylation was completely inhibited by rapamycin treat-
ment, indicating that mTORC1 activation was both necessary and sufficient to promote Rictor phosphorylation in cells.

S6K1 phosphorylates Rictor on Thr1135 in vivo and in vitro.

Next, we analyzed the sequence surrounding Ser/Thr residues within Rictor for similarities to phosphorylation sites in known substrates of S6K1 (Fig. 4A). Four Ser/Thr residues (Ser21, Ser1113, Thr1135, and Ser1219) were found to fit the R/KXRXXpS/T consensus sequence, and two of these sites (Ser21 and Ser1219) were previously identified as phosphorylated in four large-scale mass spectrometry (MS) studies (9, 15, 16, 57). To further examine the phosphorylation status of Rictor in cells, we performed MS/MS analyses of immunoprecipitated endogenous and exogenous Rictor from cells that were stimulated with insulin or PMA. Interestingly, we identified a total of 13 phosphorylation sites in Rictor, corresponding to Ser21, Ser265, Ser1035, Ser1037, Thr1135, Ser1217, Ser1219,
Ser1235, Ser1282, Ser1286, Ser1302, Ser1388, and Thr1605. Of these, three phosphopeptides contained R/KXRXXpS/T consensus sequences, corresponding to phosphorylated Ser21, Thr1135, and Ser1219 (shown in boldface in Fig. 4B). To identify the residue(s) phosphorylated by S6K1, we mutated Ser21, Ser1113, Thr1135, and Ser1219 to unphosphorylatable alanine residues and transfected these mutants in HEK293 cells. While mutation of Ser21, Ser1113, and Ser1219 did not significantly alter Rictor phosphorylation, we found that mutation of Thr1135 completely prevented the phosphorylation of Rictor induced by insulin treatment (Fig. 4C). Identification of phosphorylated Thr1135 was obtained by MS/MS sequencing, and the assignment is shown for this residue in the corresponding tryptic peptide (Fig. 4D). We also determined that Thr1135 is

Ser1235, Ser1282, Ser1286, Ser1302, Ser1388, and Thr1605. Of these, three phosphopeptides contained R/KXRXXpS/T consensus sequences, corresponding to phosphorylated Ser21, Thr1135, and Ser1219 (shown in boldface in Fig. 4B). To identify the residue(s) phosphorylated by S6K1, we mutated Ser21, Ser1113, Thr1135, and Ser1219 to unphosphorylatable alanine residues and transfected these mutants in HEK293 cells. While mutation of Ser21, Ser1113, and Ser1219 did not significantly alter Rictor phosphorylation, we found that mutation of Thr1135 completely prevented the phosphorylation of Rictor induced by insulin treatment (Fig. 4C). Identification of phosphorylated Thr1135 was obtained by MS/MS sequencing, and the assignment is shown for this residue in the corresponding tryptic peptide (Fig. 4D). We also determined that Thr1135 is
the main potential S6K1 site within Rictor that is phosphorylated in cells treated with PMA (Fig. 4E), as well as cells overexpressing Rheb (Fig. 4F) or constitutively activated S6K1 (Fig. 4G).

Thr1135, and the −3 and −5 basic residues, are conserved in Rictor from vertebrate species (Fig. 5A), suggesting that phosphorylation of this residue by a basophilic kinase plays an important function. Thr1135 does not appear to be conserved in invertebrate Rictor orthologs; however, the C-terminal half of Rictor is very poorly conserved overall (Fig. 4B). To confirm the results obtained using the RXRXXpS/T phospho-motif antibody, we generated a phosphospecific antibody directed against phosphorylated Thr1135. First, the specificity of the antibody was tested on HA-tagged wild-type Rictor and the unphosphorylatable T1135A mutant immunoprecipitated from HEK293 cells. We found that the phosphospecific antibody had high specificity toward wild-type Rictor over the Rictor mutant. Indeed, insulin treatment (Fig. 5B) and Rheb overexpression (Fig. 5C) robustly increased immunoreactivity of the antibody against wild-type Rictor but not the T1135A mutant (Fig. 5B). Its recognition of wild-type Rictor was inhibited by short-term rapamycin treatment (Fig. 5C), demonstrating that Thr1135 is an mTORC1-regulated site.

We also determined the status of Rictor phosphorylation in MEFs with a constitutive activation in mTORC1. TSC2−/− MEFs were grown in the absence of serum and treated with rapamycin (100 nM) for 30 min where indicated. Endogenous Rictor was assayed for phosphorylation using the phospho-Thr1135 antibody. (E) HEK293 cells stably expressing HA-tagged wild-type Rictor were transfected with either constitutively activated Akt (Myr-Akt) or constitutively activated S6K1 (S6K-CA). Cells were serum starved overnight, treated with rapamycin (100 nM), and stimulated with insulin (100 nM) where indicated. Rictor phosphorylation was assayed using the phospho-Thr1135 antibody.
phosphorylated Rictor was specific for Thr1135, as mutation of this residue completely inhibited Rictor phosphorylation at Thr1135 both in vivo and in vitro.

A Rictor mutant that cannot be phosphorylated on Thr1135 promotes mTORC2-directed phosphorylation of Akt. The phosphorylation of Rictor by S6K1 suggests the possibility that mTORC2-directed Akt phosphorylation is negatively regulated by mTORC1 signaling. To test this, we first verified whether Raptor knockdown could trigger Akt phosphorylation at Ser473, an mTORC2-dependent site (26, 39, 68, 70). HEK293 cells were transfected with siRNA duplexes targeted against Raptor or a scramble sequence, grown in the presence of serum or serum starved overnight, and stimulated with either insulin or EGF. As reported by others (68), we found that Raptor knockdown increased Akt Ser473 phosphorylation in response to insulin but also in cells growing with serum and in response to EGF stimulation (Fig. 7A). Because acute rapamycin treatment of cells completely inhibits Rictor phosphorylation, we also determined whether Akt Ser473 phosphorylation was modulated by short-term rapamycin treatment. HEK293 cells were serum starved overnight and pretreated with rapamycin for 30 or 60 min prior to stimulation with growth factors. Consistent with a potential mTORC1-dependent negative regulation of mTORC2, we found that pretreatment of cells with rapamycin for as short a time as 30 min considerably increased Akt Ser473 phosphorylation in response to insulin but also in cells growing with serum and in response to EGF stimulation (Fig. 7B), and serum (data not shown). Together, these findings support the idea that mTORC1 rapidly elicits an inhibitory signal that negatively regulates mTORC2 activity.

To address the direct physiological relevance of S6K1-mediated phosphorylation of Rictor, we determined whether mutation of Thr1135 affects Akt phosphorylation at Ser473 or SGK1-dependent NDRG1 phosphorylation at Thr346/56/66. HEK293 cells stably expressing wild-type Rictor or the T1135A and T1135D mutants were serum starved overnight, stimulated with EGF for 5 or 10 min, and assayed for Akt and NDRG1 phosphorylation by immunoblotting. While expression of wild-type Rictor elevated Akt Ser473 phosphorylation levels, we found that expression of the Rictor T1135A mutant further inhibited Akt Ser473 phosphorylation.
FIG. 7. A Rictor mutant that cannot be phosphorylated on Thr1135 promotes mTORC2-directed phosphorylation of Akt. (A) HEK293 cells were transfected with siRNA duplexes targeted against a scrambled sequence or human Raptor. Cells were grown in the presence of serum or serum starved overnight and stimulated with EGF (25 ng/ml) or insulin (100 nM). Akt phosphorylation was assayed by immunoblotting from cell lysates using Akt phospho-Ser473 antibodies. (B) HEK293 cells were serum starved overnight and treated with rapamycin for 30 min prior to stimulation with insulin (25 nM) (left panel) or EGF (25 ng/ml) (right panel). Akt phosphorylation was assayed as for panel A. DMSO, dimethyl sulfoxide. (C) HEK293 cells stably expressing an empty vector, Rictor wild-type Rictor, or the T1135A or T1135D mutant were seeded at similar densities and serum starved overnight. Cells were stimulated with EGF (25 ng/ml) for 5 or 10 min and assayed for Akt and NDRG1 phosphorylation using NDRG1 phospho-Thr346/Thr356/Thr366 antibodies. (D and E) Results from three independent experiments as for panel C were quantified, and the mean (± SD) fold stimulation in Akt (D) and NDRG1 (E) phosphorylation was calculated compared to an empty-vector control. (F) siRNA duplexes targeted against a scrambled sequence or human Rictor were transfected in HEK293 cells stably expressing an empty vector or siRNA-resistant wild-type Rictor or the T1135A or T1135D mutant. Cells were serum starved overnight, stimulated with EGF (25 ng/ml), and harvested for FACS analysis of Ser473 phosphorylation (see Materials and Methods for details). Levels of phosphorylated Akt were determined in HA-Rictor positive cells. Data are expressed as fold stimulation in Akt phosphorylation compared to unstimulated empty-vector-transfected cells.
increased Akt phosphorylation induced by EGF stimulation (Fig. 7C). Interestingly, expression of the Rictor T1135D mutant did not significantly promote Akt phosphorylation, suggesting that aspartic acid mutation of Thr1135 acts as a phosphomimetic. These changes were quantified from three independent experiments, and expression of the Rictor T1135A mutant was found to stimulate Akt phosphorylation by approximately 2-fold compared to wild-type Rictor (Fig. 7D). Similar quantifications were performed for NDRG1 phosphorylation at Thr346/56/66, and although there appeared to be a similar trend (Fig. 7E), NDRG1 phosphorylation was not found to be significantly increased in cells expressing the Rictor T1135A mutant.

To confirm this result, we performed RNAi to remove endogenous Rictor from HEK293 cells and rescued its expression with wild-type Rictor or the T1135A and T1135D mutants. Using fluorescence-activated cell sorter (FACS) analysis to quantify Akt phosphorylation at the single-cell level, we found that reducing endogenous Rictor expression strongly inhibited Akt phosphorylation at Ser473 stimulated by EGF treatment (Fig. 7F). Expression of exogenous wild-type Rictor to a near-endogenous level (Fig. 7F, inset) completely rescued Akt phosphorylation in Rictor knockdown cells, indicating the validity of this assay to test Rictor phosphorylation site mutants. FACS analysis of cells expressing the Rictor T1135A mutant revealed increased Akt phosphorylation compared to that with wild-type Rictor, indicating that phosphorylation of Thr1135 negatively regulates Akt phosphorylation at Ser473 (Fig. 7F). Consistent with the Rictor T1135D mutant playing a phosphomimetic role, we found that cells expressing this mutant did not have increased Akt phosphorylation compared to wild-type Rictor-expressing cells. Together, these data support the idea that Thr1135 phosphorylation negatively regulates mTORC2-directed Akt phosphorylation.

Rictor phosphorylation at Thr1135 inhibits Akt signaling and cell proliferation. Prolonged rapamycin treatment was shown to correlate with mTORC2 disassembly and hypophosphorylation of Rictor (21, 39, 79). Thus, we determined the impact of Rictor phosphorylation at Thr1135 on mTORC2 assembly by coimmunoprecipitation in CHAPS-containing lysis buffer, as previously described (66). HEK293 cells were transfected with HA-tagged Rictor and Flag-tagged mTOR, serum starved overnight, and coimmunoprecipitated following insulin treatment to trigger Rictor phosphorylation at Thr1135. Under these conditions, we did not find major differences in mTOR binding to wild-type Rictor or the Thr1135phosphorylation site mutants (Fig. 8A), suggesting that the rapid S6K1-dependent phosphorylation of Rictor does not regulate mTORC2 assembly. Similar data were also obtained for the association of endogenous mTOR with HA-tagged Rictor (data not shown).

We also determined whether mutation of Thr1135 could affect mTORC2 kinase activity. Using endogenous Rictor immunoprecipitates, we first assayed associated mTOR activity toward kinase-inactive GST-Akt purified from mammalian cells. We found that EGF stimulation increased mTORC2 activity by about 2.5-fold, which was completely inhibited by pretreatment of cells with the dual PI3K/mTOR inhibitor, PI-103 (Fig. 8B). Using these conditions, we measured mTORC2 kinase activity in HA-tagged Rictor immunoprecipitates from unstimulated and EGF-stimu-

DISCUSSION

In this study, we have uncovered a new regulatory link between the two mTOR complexes. We show that growth factors promote the mTORC1-dependent and rapamycin-sensitive phosphorylation of Rictor (Fig. 1). Overexpression of Rheb...
FIG. 8. Rictor phosphorylation at Thr1135 inhibits Akt signaling and cell proliferation. (A) HEK293 cells were transfected with Flag-tagged mTOR and wild-type HA-tagged Rictor or Thr1135 mutants. Associated mTOR was determined in anti-HA immunoprecipitates using anti-Flag antibodies. (B) mTORC2 kinase assays were optimized by immunoprecipitating endogenous Rictor from HEK293 cells stimulated with EGF (25 ng/ml) and treated with the dual PI3K/mTOR inhibitor PI-103 where indicated (left panel). Using these assay conditions, mTORC2 activity was measured in HA-tagged Rictor wild-type or mutant immunoprecipitates from unstimulated or EGF-stimulated cells (right panel). mTORC2 activity toward kinase-inactive GST-Akt purified from mammalian cells was assayed. (C) Subcellular localization of wild-type Rictor and the Rictor Thr1135 mutants. Confocal images of serum-growing HEK293 cells stably expressing HA-tagged wild-type Rictor or Thr1135 mutants are shown. (D) HEK293 cells stably expressing wild-type Rictor or Thr1135 mutants were serum starved overnight and stimulated with EGF (25 ng/ml). Phosphorylation of Akt substrates FoxO1/3a and GSK3β was assayed by immunoblotting. (E) HEK293 cells stably expressing wild-type Rictor or the Thr1135 mutants were grown in culture medium containing 5% FBS. The relative number of viable cells was measured during five consecutive days using an MTS assay. (F) Upon growth factor stimulation, PI3K is recruited to the plasma membrane using IRS-dependent and
and loss of TSC2, leading to the constitutive activation of mTORC1, were found to promote Rictor phosphorylation in serum-starved HEK293 cells and in MEFs (Fig. 3, 4, and 5), suggesting that activation of mTORC1 is sufficient to regulate Rictor. We demonstrate that S6K1 is both required (Fig. 2) and sufficient (Fig. 3) to promote Rictor phosphorylation, and we identify Thr1135 as the primary site regulated by S6K1 and sufficient (Fig. 3) to promote Rictor phosphorylation, and suggesting that activation of mTORC1 is sufficient to regulate serum-starved HEK293 cells and in MEFs (Fig. 3, 4, and 5), mTORC1, were found to promote Rictor phosphorylation in and loss of TSC2, leading to the constitutive activation of mTORC1 activity and Rictor phosphorylation, a more thorough examination of cells do not disrupt or increase Rictor binding to mTOR (Fig. 8A and data not shown). In addition, mutation of Thr1135 did not affect the interaction between mTOR and Rictor, suggesting that Rictor phosphorylation at Thr1135 does not regulate mTORC2 assembly. Prolonged rapamycin treatment was shown to disrupt mTORC2 assembly and to correlate with the hypophosphorylation of Rictor (21, 39, 67, 79), but based on our results, it is unlikely that the complete inhibition of Rictor Thr1135 phosphorylation following acute rapamycin treatment is directly responsible for these effects. Rictor phosphorylation at Thr1135 may also regulate the interaction of an unknown mTORC2 binding partner. A recent study aimed at identifying novel Rictor-interacting proteins using a TAP-tagging strategy revealed that three 14-3-3 isoforms (ε, α, and β) may interact with Rictor (58). However, the same group did not find 14-3-3 isoforms in endogenous Rictor immunoprecipitates, nor did large-scale studies aimed at identifying 14-3-3 substrates ever identify Rictor as a 14-3-3 binding protein (41, 54). Nonetheless, analysis of potential 14-3-3 binding sites in Rictor using ScanSite (56) revealed Thr1135 as a potential 14-3-3 binding site. By communoprecipitation assays, we have found that Rictor and 14-3-3 can interact in cells (data not shown), suggesting that 14-3-3 may play some role in regulating mTORC2 function. Interestingly, a recent article with similar findings on Rictor phosphorylation demonstrated that Rictor interacts with 14-3-3 in a Thr1135-dependent manner (17). These results potentially explain the molecular mechanisms triggered by Thr1135 phosphorylation, but the regulation of 14-3-3 binding to Rictor and its impact on mTORC2 signaling remain elusive. Because Thr1135 phosphorylation does not affect Rictor subcellular localization (Fig. 8C), one interesting possibility is that 14-3-3 binding regulates Rictor protein turnover rates. Although we (Fig. 5D) and others (17, 33) have found that Rictor expression levels do not appear to be reduced in TSC2−/− MEFs, which have constitutively high mTORC1 activity and Rictor phosphorylation, a more thorough examination of Rictor protein stability will be required to definitely test this hypothesis. Acidic amino acid (Asp or Glu) substitution of phosphorylation sites to mimic phosphorylation has been suggested to generate weak 14-3-3 binding sites (24). Our results demonstrate that the Rictor T1135D mutant acts as a phosphomimetic, indicating that phosphorylation of Thr1135 may not solely regulate 14-3-3 binding. The potential role for Rictor phosphorylation in the recruitment or regulation of a Ser/Thr phosphatase could be such a possibility. Evidently, more experimentation will be required to determine the exact molecular mechanisms regulated by Thr1135 phosphorylation.

One caveat when using rapamycin analogs as a single agent

-independent mechanisms. PIP3-mediated recruitment of Akt to the plasma membrane promotes PDK1- and mTORC2-dependent phosphorylation of Akt at Thr308 and Ser473, respectively. Upon activation, Akt phosphorylates TSC2, which releases the inhibitory function of the TSC complex on Rheb. GTP-loaded Rheb then activates mTORC1, which phosphorylates and activates S6K1. Activated S6K1 phosphorylates several substrates, including IRS-1 and Rictor, which play roles in the negative regulation of mTORC2 signaling.
for cancer therapy is that in many cases it is cytostatic and does not induce cell death. Furthermore, as demonstrated by our results, mTORC1 inhibition potentiates growth factor activation of Akt by reducing Rictor phosphorylation at Thr135, which may increase cell survival and enable acquisition of additional lesions that may contribute to resistance to therapy. Our findings suggest that specific inhibitors of mTOR catalytic activity, which would target both mTORC1 and mTORC2, may be more suitable than rapalogs alone for the treatment of cancer, as they would abrogate any mTORC2 activation resulting from inhibition of mTORC1.

ACKNOWLEDGMENTS

We thank John Blenis, David Sabatini, Dario Alessi, and Estela Jacinto for generously providing DNA constructs. We also thank Guy Sauvageau and Marc Thérien for critical reading of the manuscript, David Stephen for help and technical assistance with 14-3-3 experiments, and Eric Bonneil and Pierre Thibault for MS analyses.

This work was supported by the Terry Fox Foundation through the Canadian Cancer Society Research Institute (grant no. 018311). P.P.R holds the Canada Research Chair in Cell Signalling and Proteomics and a Career Development Award (CDA) from the Human Frontier Science Program (HFSP). L.A.J. is the recipient of a Studentship from the Canadian Institutes for Health Research (CIHR) and the Fonds de la Recherche en Santé du Québec (FRSQ). A.C. is the recipient of a postdoctoral fellowship from the FRSQ and the Cole Foundation. IRC is supported in part by the Canadian Centre of Excellence in Commercialization and Research (CECR), and the FRSQ.

REFERENCES

30. Jin, Y., J. S. Yoon, P. Zhang, M. S. Hyun, E. A. Sturgill, X. Zhang, T. Zhang, and R. F. Lamb. 2009.suggesting that specific inhibitors of mTOR catalytic activity, which would target both mTORC1 and mTORC2, may be more suitable than rapalogs alone for the treatment of cancer, as they would abrogate any mTORC2 activation resulting from inhibition of mTORC1.
tion of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274:17179–17183.
bution of the protein complexes mTORC1 and mTORC2: rapamycin trig-
ger phosphorylation and delocalization of the mTORC2 components
Bar-Peled, and D. M. Sabatini. 2008. The Rag GTPases bind rapor-
binding partner of mTOR, defines a rapamycin-insensitive and rapor-inde-
A. L. Markhard, and D. M. Sabatini. 2006. Prolonged rapamycin treatment
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.
TSC/Rhe/mTOR/S6k cassette induces IRS1/2 depletion, insulin resistance,
Multiaxial disruption of the rictor gene in mice reveals that mTOR complex
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control
mTOR signaling by acting as a GTPase-activating protein complex toward
72. Tsatsos, A., and K. V. Kandror. 2006. Nutrients suppress phosphatidylinos-
itol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin
Insulin signaling to mTOR mediated by the Akt/PKB substrate PRAS40.
74. Wang, L. T., E. Harris, B. A. Roth, and J. C. Lawrence, Jr. 2007. PRAS40
regulates mTORC1 kinase activity by functioning as a direct inhibitor of
Mammalian target of rapamycin complex 1 (mTORC1) activity is associated
with phosphorylation of Raptor by mTOR. J. Biol. Chem. 284:14693–14697.
76. Woo, S. Y., D. H. Kim, C. J. Yun, Y. M. Kim, E. V. Haar, S. I. Lee, J. W. Hegg,
S. Bandhakavi, and T. J. Griffin. 2007. PR55A, a novel component of mTOR
complex 2, regulates platelet-derived growth factor receptor beta expression
77. Wulfschlegler, S., R. Loewith, and M. N. Hall. 2006. TOR signaling in growth
organization of target of rapamycin complex 2. J. Biol. Chem. 280:30979–
30704.
an essential TORC2 component required for complex formation and
F. Vazquez, C. L. Carpenter, and D. J. Kwiatkowski. 2003. Loss of Tsc1/Tsc2
activates mTOR and disrupts PI3K-Akt signaling through downregulation