c-mos Proto-Oncogene RNA Transcripts in Mouse Tissues: Structural Features, Developmental Regulation, and Localization in Specific Cell Types

F. PROPST, M. P. ROSENBERG, A. IYER, K. KAUL, AND G. F. VANDE WOUDE*

Bionetics Research, Inc., Basic Research Program, National Cancer Institute Frederick Cancer Research Facility, Frederick, Maryland 21701

Received 14 October 1986/Accepted 26 January 1987

The c-mos proto-oncogene was one of the first cellular homologs of a retroviral oncogene to be molecularly cloned (18, 28). However, the analysis of c-mos RNA expression and the detection of protein products in normal tissues have been difficult. Early information about putative transcription regulation sequences at the c-mos locus was obtained from DNA transfer experiments. It was found that a cellular DNA sequence ~1 kilobase (kb) upstream from the mos open reading frame has transcription termination functions and can inhibit expression of the c-mos gene transforming activity in NIH3T3 cells (4, 24, 44). The presence of this cis-acting inhibitory sequence suggested that transcription of the c-mos gene may be tightly regulated and restricted to a few specific cell types (24, 32). Likewise, it emerged from similar transfection experiments that a low level (1 to 10 copies per cell) of mos transcripts (43, 45) and a very low level of mos protein (29) are sufficient to transform NIH3T3 fibroblasts. These results prompted us to reexamine the question of c-mos expression in normal mouse tissues. Using a sensitive S1 nuclease assay, we have been able to detect mos transcripts in 19-day embryos and gonads of adult mice (32). Subsequent Northern analysis revealed a 1.7-kb transcript in testes, a 1.4-kb transcript in ovaries, and ~1.3- and 2.3-kb transcripts in male and female embryos (32).

Here we report the detection of mos transcripts in additional tissues. We have mapped the mos RNA initiation sites in both testes and ovaries and examined the pattern of expression during postnatal development of the gonads. We also show that mos RNA transcripts in testes are expressed in haploid germ cells.

MATERIALS AND METHODS

RNA preparations. (i) Organs and embryos. In general, specific organs were obtained from several adult BALB/cNCr or C57BL/6Ncr mice (34 to 39 weeks old), and the pooled material was frozen on dry ice and kept at −70°C before homogenization. Embryos free of extraembryonic membranes separated from the placenta were collected at day 18 or 19 of gestation and were sexed by microscopic examination of the gonads. The frozen tissues were homogenized with a PT10-35 Kinematics homogenizer (Brinkman no. 2711200-5) in 5 M guanidinium isothiocyanate–2 M mercaptoethanol–0.08 M Tris hydrochloride (pH 7.4), and total RNA was prepared as described previously (11, 22, 39).

Poly(A)+ RNA was prepared by passing the total RNA samples once over an oligo(dT) column as described previously (22), except that washing with low-salt buffer after loading was omitted (32). This protocol yielded a ~10-fold enrichment for poly(A)+ RNA. The RNA concentrations of total and poly(A)+ RNA samples were calculated from the absorbance at 260 nm. All samples were also analyzed by gel electrophoresis to ensure that the RNA was intact and that equal amounts of total RNA were loaded from samples to be compared quantitatively for the level of mos transcripts.

(ii) Testis cell fractions. We prepared cell fractions by the procedure of Vellutini et al. (41) with some modifications. Briefly, the decapsulated testes of 20 adult BALB/cNcr males were treated with 0.1% collagenase (Cooper Biomedical) at 32°C for 15 min. Seminiferous tubules were isolated by allowing them to sediment at unit gravity. The supernatant was decanted and the seminiferous tubules were cut into 1- to 2-mm pieces and incubated at 32°C for 20 min with trypsin (GIBCO Laboratories) and DNase I (0.6 mg/ml). The resulting cell suspension was decanted and filtered through a Nitex cloth filter (60 mesh; Tetko, Inc.). The remaining undissociated tubules were incubated with trypsin and DNase once again. The filtered cell suspensions from both trypsin-DNase I treatments were pooled, the cells were collected by centrifugation, and the cell integrity was monitored by trypsin blue exclusion.
For elutriation the cells were suspended in 20 ml of phosphate-buffered saline containing 5% calf serum and introduced into the mixing chamber of the centrifugal elutriator (Beckman Instruments, Inc.). Elutriation was done at 4°C and at a rotor speed of 2,060 rpm. Four fractions were collected at flow rates of 5, 13, 25, and 50 ml/min. The cells in each fraction were pelleted and subjected to bovine serum albumin gradient centrifugation as described previously (33). The predominant band of each of the four gradients was collected, the cells were pelleted and then suspended in 5 ml of Dulbecco modified Eagle medium, and a sample was streaked out on a glass slide, Giemsa stained, and examined by light microscopy for the cell types present.

For RNA analysis the fractionated cells were washed twice in Dulbecco modified Eagle medium. The final cell pellet was dissolved in 7 M guanidine hydrochloride-0.02 M potassium acetate (pH 7.0)-5 mM EDTA and homogenized in a Dounce homogenizer, and total RNA was prepared as described previously (8, 37).

(iii) Polysomes. Polysomal and nonpolysomal RNA from fresh mouse testes was prepared by centrifugation of postmitochondrial supernatants through 10 to 60% linear sucrose gradients for 2.5 h at 25,000 rpm in a Beckman SW28 rotor as described previously (14), except that the postmitochondrial supernatant was incubated for 15 min on ice in the presence of 1% deoxycholate and either 6 mM MgCl₂ or 30 mM EDTA before fractionation.

RNA analysis. S1 nuclease protection assays were carried out as described previously (3, 9). Briefly, 25 μg of total RNA or 25 μg of poly(A)⁺ RNA in aqueous solution was lyophilized and dissolved in 10 μl of hybridization buffer (9) containing the end-labeled DNA probe. After denaturation for 10 to 15 min at 90°C the samples were incubated overnight at the following temperatures: probes A, B, C, and F, 60°C; probe E, 51°C. Samples were diluted to a final volume of 310 μl with S1 digestion buffer (9) containing 10,000 U of single-strand-specific S1 nuclease (Boehringer Mannheim Biochemicals) per ml, incubated at 37°C for 60 min, and analyzed on denaturing 5% polyacrylamide gels.

For Northern analysis, RNA samples were fractionated on agarose formaldehyde gels and transferred to nitrocellulose as described previously (21, 34, 38). Hybridization was carried out for 2 days at 42°C in 50% formamide (22). The three final washes were in 0.015 M NaCl-0.0015 M sodium citrate-0.1% sodium dodecyl sulfate at 55°C for 20 min.

For primer extension experiments, a 55-base-pair (bp) AluI-Aval restriction fragment 5' end labeled (22, 23) at the first Aval site in the c-mos open reading frame (corresponding to position 4061 of the v-mos sequence [40]) was purified from a nondenaturing 5% polyacrylamide gel. This primer was hybridized in 10 μl of S1 hybridization buffer (9) to the RNA sample as described above for the S1 assay at 42°C for 3.5 days. The mixture was diluted with 300 μl of 0.3 M sodium acetate (pH 5), precipitated by adding 700 μl of ethanol, washed, and dried. Dry samples were carefully dissolved in 50 μl of a buffer containing 50 mM Tris hydrochloride (pH 8.3), 20 mM KCl, 10 mM MgCl₂, 5 mM dithiothreitol, 1 mM each of the 4 deoxynucleotide triphosphates, and 600 U of RNAsin (Promega Biotec) per ml. After incubation with 30 U of reverse transcriptase (Life Sciences, Inc.) at 43°C for 60 min, the samples were extracted once with a 1:1 mixture of phenol and chloroform, precipitated with ethanol, and analyzed on a denaturing 5% polyacrylamide gel. Radioautography of dried polyacrylamide gels and nitrocellulose filters was carried out at -70°C with XAR-5 X-ray film (Eastman Kodak Co.) and an intensifying screen.

DNA probes. All mos-specific probes were derived from appropriate subclones of c-mos sequences in pBR322 (Fig. 1). 3' end labeling was carried out with the Klenow fragment

FIG. 1. Probes derived from the mouse c-mos locus. Relevant restriction sites are shown. Wavy lines represent pBR322 sequences (restriction sites and their sequence position are given below the line). Probes E and F are labeled, respectively, at the first and second AvaI site in the c-mos open reading frame (corresponding to positions 4061 and 4093, respectively, of the v-mos sequence [40]).
of *Escherichia coli* DNA polymerase I (Boehringer) in the presence of the appropriate α-32P-labeled deoxynucleotides (3,200 Ci/mmol; New England Nuclear Corp.) required to fill in the respective restriction site as described previously (22), except that labeling was done in the presence of 240 mM NaCl. 5' end labeling was carried out with polynucleotide kinase (Boehringer) (22, 23) and [γ-32P]ATP (7,000 Ci/mmol; New England Nuclear). The *AvaI*-HindIII fragment for probe D was gel purified and nick translated as described previously (36). An *abl* oncogene-specific probe, the 1.5-kb *BglII* fragment of pAB1 (12), was subcloned into the *BglII* sites of pHC79 (Boehringer) (15). This subclone was used to obtain the gel-purified, 1.5-kb *BglII* fragment, which was labeled by nick translation (36). For the actin-specific probe a gel-purified, 1-kb *PstI* fragment from a rat β-actin cDNA clone was used (6).

RESULTS

Detection and S1 nuclease mapping of *mos* transcripts in various mouse tissues. We examined preparations of poly(A)-enriched RNA for the expression of *c-mos* transcripts in normal mouse tissues by using a sensitive S1 nuclease protection assay. In addition to embryos, testes, and ovaries (32), we found evidence for *mos* transcripts in brain, kidney, mammary gland, placenta, and epididymis (Fig. 2A and B). We also observed some slight protection of the probe with RNA from heart and lung tissue (data not shown), but not from liver, skin, intestine, and spleen. The number of *mos* transcripts was estimated to be 10 to 100 copies per cell in the gonads and 1 to 10 copies per cell in embryos by comparing the level of *mos* transcripts in these tissues to *mos* RNA in *v-mos*-transformed NIH/3T3 cells (43, 45; data...
not shown). The structure of all RNA transcripts described here and previously (32) appears to be identical downstream from the mos open reading frame. S1 probes were consistently protected for 480 bp (Fig. 2A and B) with the endpoint of protection 130 bp downstream from the mos termination codon and ~20 bp downstream from a consensus polyadenylation signal (40). In contrast, the mos RNA transcripts examined thus far differ at their 5' end in a tissue-specific fashion (Fig. 2C). For example a ~1.6-kb fragment of probe C is protected by RNA from epididymis and embryos (Fig. 2C, lanes 1, 3, and 4). With embryonic RNA, smaller fragments ranging from 700 to 1,200 bp in length are also protected. These fragments probably derive from the class of ~1.3-kb transcripts detected in embryonic RNA by Northern analysis (Fig. 2D (32). Note that every transcript protecting the probe for less than 1,050 bp will lack N-terminal sequences of the mos open reading frame. Ovarian RNA and testicular RNA protected fragments of ~1.1 and ~1.3 kb, respectively (Fig. 2C, lanes 2 and 5).

By Northern analysis, we were able to detect a 6-kb transcript in epididymis and embryonic RNA (Fig. 2D, lanes 4, 5, and 6), and an additional very faint band at 1.4 kb was observed in three independent preparations of epididymis RNA (Fig. 2D, lane 4). Whereas the S1 analyses of RNA from brain, kidney, placenta, and mammary gland were positive (Fig. 2B), Northern analyses did not reveal mos transcripts, perhaps due to either low levels of mos mRNA or size heterogeneity of the transcripts.

Mapping of transcriptional start sites on the c-mos gene. A primer extension analysis of testicular and ovarian mos transcripts was performed in parallel with an S1 nuclease protection assay. The primers to be extended by reverse transcriptase and the S1 probe were end labeled at the same AvaiI site (Fig. 1) to allow a direct comparison of the results obtained by the two methods. Primer extension analysis of testicular RNA with this primer revealed equal amounts of four fragments 407, 396, 362, and 353 bp in length (Fig. 3B, lane 1, full arrows). These fragments are the same size as the fragments obtained by S1 nuclease mapping (Fig. 3A, lane 3). With primer extension of ovarian RNA we observe two minor and two major fragments (Fig. 3B, lane 2, arrows and open arrows, respectively), which correspond in relative quantity and size to the fragments protected in the S1 assay (Fig. 3A, lane 2). Smaller bands observed in the primer extension experiments of testicular or ovarian RNA, for example, the 270-bp band in lane 1 (Fig. 3B), have no corresponding counterpart in the S1 assay and are probably due to premature reverse transcriptase stops. By comparing the size of protected fragments by using various probes, we can estimate the transcriptional start sites within ± 5 bp (data not shown). From our analyses it is evident that the major testicular and ovarian transcription initiation sites are clustered ~280 and ~70 bp upstream from the mos open reading frame, respectively (Fig. 3C). The sequences in the promoter regions are not G+C rich and do not contain obvious TATA boxes (Fig. 4). We could not identify regions of homology in sequences upstream from the individual start sites (Fig. 4).

Developmental regulation of mos expression. Total RNA was prepared from testes of mice at various times after birth. By Northern analysis the 1.7-kb mos RNA transcripts were detected beginning at day 25 (Fig. 5A, lanes 3, 4, and 5). The more sensitive S1 nuclease assay reveals that very low levels of mos expression are detectable in testes as early as 1 day after birth and through day 23. The levels for days 17 and 20 are shown (Fig. 5B, lanes 2 and 3). By day 30 the level of mos RNA is equivalent to the level found in adult mouse testis (Fig. 5B). As with mos transcripts, the 4.7-kb testis-specific c-abl transcript (26) shows a similar pattern of developmental regulation in the testis (Fig. 5A, lanes 4 and 5), whereas the more common 5.3- and 6.5-kb c-abl transcripts do not (Fig. 5A, lanes 1 through 5). The differential appearance of c-abl transcripts compared to the c-mos transcripts was not observed in a subsequent experiment.

In contrast to the pattern of mos expression in testes the levels in ovaries are highest in 5- to 20-day-old animals (Fig. 6), and a three- to fivefold decrease occurs during the next 10 days. Thereafter, the level of mos transcripts stays constant for at least 7 weeks but is further decreased in older animals (34 to 39 weeks) (Fig. 6). We have also observed lower levels of mos RNA at days 1 and 10 (Fig. 6, lanes 1 and 3) in several experiments. It is possible that this is a feature of mos expression in postnatal ovarian development. Alternatively,
it may be due to variation in the amount of contaminating uterine tissue isolated with the ovary from these very young mice, hence lowering the concentration of ovarian RNA.

Expression of c-mos in specific testicular cell types. We used the method of centrifugal elutriation (41) followed by bovine serum albumin gradient centrifugation (33) to separate postmeiotic germ cells from other cell types present in the adult testes. We obtained four fractions. Fraction 1 contained residual bodies and elongated spermatids, fractions 2 and 3 contained elongated and round spermatids, and fraction 4 contained round spermatids and multinucleated round spermatids. With the mos-specific probe we detected little difference in the level of the 1.7-kb transcript in total RNA of the four fractions (Fig. 7). In agreement with previously published results (31), we detected the testis-specific c-abl transcript (26) in postmeiotic fractions enriched for elongated and round spermatids (Fig. 7, lanes 3 and 4). The level of this c-abl transcript was dramatically decreased in fractions 1 and 4 (Fig. 7, lanes 2 and 5). We also detected the larger, more common 6.5- and 5.3-kb c-abl transcripts (2, 26) and consistently observed higher levels of the 6.5-kb transcript in fraction 4 (Fig. 7, lane 5). The testis-specific actin transcript (42) was detected in fractions 1 through 3 (Fig. 7, lanes 2 through 4). This is consistent with the presence of this transcript in round spermatids and residual bodies as reported by Waters et al. (42). The level of this transcript like the testis-specific c-abl transcript was reduced in the cells in fraction 4 (Fig. 7, lane 5). From these analyses we conclude that testicular mos transcripts are present in haploid germ cells, but we cannot rule out mos expression in premeiotic germ cells or testicular somatic cells.

Distribution of testicular mos RNA transcripts in polysomal and nonpolysomal RNA fractions. The presence of mos transcripts in the testicular germ cell fraction led us to ask whether the RNA was present on polysomes. Postmitochondrial supernatants of fresh testicular homogenates were fractionated on 10 to 60% linear sucrose gradients in the absence or presence of EDTA (Fig. 8). The fractions were pooled as indicated in Fig. 8, and the level of mos RNA in each pool was determined by Northern analysis. mos RNA transcripts are present on monosomes and polysomes and are dissociated from the latter in the presence of EDTA (Fig. 8). Only a small percentage of mos transcripts is detected in the 4S to 18S fraction (data not shown).

DISCUSSION

c-mos RNA transcripts are expressed in a novel fashion in normal mouse tissues. Thus, we find tissue-specific variations in the size, number, and level of mos transcripts expressed. Low levels of RNA were found to be expressed in brain, kidney, placenta, and mammary gland and, to a lesser extent, in heart and lung, but these transcripts are only detectable by S1 analysis and are either too low in amount or too heterogenous in size to be detected by Northern analysis. Previous studies have shown that extremely low levels of v-mos RNA (43, 45) and v-mos protein (29) expression are sufficient to transform NIH/3T3 cells. In light of these results it is not surprising that the level of mos expression is very low in tissues such as brain, kidney, placenta, and mammary gland. These results indicate that the c-mos gene might have a function in somatic cells of adult animals.

Higher levels of mos RNA are detected in term embryos, epididymides, testes, and ovaries (32). We have found that mos transcripts were identical for a major portion of the open reading frame and appear by S1 analysis to terminate at a common site 130 bp 3' of the mos termination codon. We cannot exclude the possibility that this is a processing site,
but circumstantial evidence strongly suggests that this site represents the 3' end of all mos transcripts. First, this site is 20 bp downstream from a consensus polyadenylation signal (40). Second, this polyadenylation signal is conserved in its position between chicken (Schmidt and Vande Woude, manuscript in preparation), mouse (40), and human mos genes (Propst and Vande Woude, manuscript in preparation). Finally, size constraints of the ovarian and testicular transcripts for which internal structure and the transcription initiation sites have been determined (Fig. 3) are consistent with this being the polyadenylation site. These results indicate that the mos proto-oncogene expressed in gonadal tissue contains a single coding exon and, in contrast to all other proto-oncogenes, does not appear to be processed posttranscriptionally.

By S1 mapping we have been able to demonstrate that the major tissue-specific size variation in mos RNA transcripts occurs in the 5' portion of the RNA (Fig. 2C). For example, we have shown that RNA from epididymis (and term embryo) protected probe C to a site at least 0.5 kb upstream from the mos open reading frame (Fig. 2C), and by Northern analysis we can detect a 6-kb mos RNA transcript in this tissue (Fig. 2B). Thus, apparently no additional protein-coding sequences are spliced into the mos open reading frame in this 6-kb transcript, and it therefore contains the same mos-related open reading frame as the shorter testicular and ovarian transcripts. (We cannot exclude the possibility that other open reading frames may be present in the upstream portion of this 6-kb message.)

Our results indicate that certain mos RNA transcripts can lack the N-terminal portion of the open reading frame. Size considerations and the 5'S1 mapping data suggest that the protected fragments in the size range of <1.050 bp observed with embryonic RNA (Fig. 2C) are probably derived from the ~1.3-kb transcripts detected by Northern analyses (Fig. 2D) (32). We have observed similar short transcripts in human and rat tissues (Propst and Vande Woude, in preparation). These short transcripts would lack the N-terminal portion of the open reading frame and could only code for truncated proteins starting at an internal AUG (position 66 or 142) (40). These proteins would seem to be quite unusual. However, Bold and Donoghue (5) have shown that deletion of the AUG in v-mos corresponding to position 1 in c-mos does not abolish transforming activity, but the additional deletion of the following AUG corresponding to position 66 in c-mos does.

The size differences in mos RNA transcripts present in embryos, epididymis, testes, and ovaries are most likely due to tissue-specific utilization of different promoters. Primer extension analyses of testicular and ovarian RNA reveal for both tissues multiple transcription start sites (Fig. 3). The testicular start sites are clustered around −280 bp and are clearly distinct from the ovarian start sites, which are clustered around −70 bp. Thus, there are at least two promoter regions in front of the mos open reading frame. The fact that neither region contains TATA boxes (Fig. 4) could explain the multiple start sites (7). Likewise, these regions do not contain G+C-rich tracts as has been found for promoters of other genes (16, 17, 35). Testicular and ovarian RNA transcripts differ only in their 5' untranslated sequence and contain the same putative mos open reading frame. This raises the questions of how and why different promoters are used in a tissue-specific manner. Testicular mos transcripts are expressed in germ cells (Fig. 7). Perhaps then the ovarian mos transcripts are also expressed in germ cells, and the differences in the genesis of the male and female gametes have led to the selection of special features of the mos transcripts. For instance the male gametes are produced de novo in the mature testicle and undergo differentiation from immature diploid spermatagonia to mature haploid spermatids in ~5 weeks (27). The diploid daughter cells of the self-renewing spermatagonia stem cell population differentiate in several morphologically distinct steps into pachytene spermatocytes. These cells contain four complements of the genome and give rise to four haploid round spermatids by
meiotic division. The round spermatids undergo further differentiation to elongated spermatids and finally mature spermatozoa (27). In contrast the female is born with a finite, ever-decreasing number of oocytes, most of which are arrested at a specific state of differentiation, the premeiotic diplotene stage. The regulation of mos expression could involve male- and female-specific, trans-acting factors to permit the utilization of testis- and ovary-specific promoters. Alternatively, the lower temperature in the testes might influence the choice of the promoter and impose specific constraints on testicular mos expression. It is conceivable that the differences in female and male gametogenesis require differential stability or translational efficiency of the mos transcripts. This could be accomplished by varying the S' untranslated sequences. For instance the major ovarian mos transcripts contain one or two AUsGs in the S' untranslated region, whereas the testicular transcripts have the two ovarian AUsGs plus an additional two further upstream. In each case the reading frame opened by one of these initiation codons is terminated before the mos AUG. A similar configuration was described for the Saccharomyces cerevisiae GNC4 gene, and a strong influence of the upstream ATUsGs on the translational efficiency was demonstrated (25). The mos transcripts in testes are associated with monosomes and polysomes (Fig. 8). The presence of mos transcripts in the monosome fraction could result from a low translational efficiency caused by the presence of the four upstream AUsGs. Thus, the rate of initiation of protein synthesis from mos transcripts could be diminished by the upstream AUsGs. We also note the poor homology of the first mos initiation codon to the consensus sequence of translational start sites (20). As a result initiation might be slow compared with elongation, which could explain the abundance of mos transcripts in the monosome RNA fraction. Since attempts to detect the mos protein in testes have so far been unsuccessful, we cannot exclude that the transcripts are not translated at all. However, this seems unlikely since c-mos is transcribed in testes from mice, rats (Propst and Vande Woude, unpublished results), and humans (Propst and Vande Woude, in preparation) and in mouse ovaries. In addition, mos expression in the mouse gonads follows a concise pattern of developmental regulation.

The data presented here support the hypothesis that the c-mos proto-oncogene has a general function in male and female gametogenesis. Thus, the results of our cell fractionation experiments indicate that c-mos is expressed in haploid round spermatids in the testes. This interpretation is supported by the pattern of mos expression during the postnatal development of the testes, since the increase in the level of mos transcripts coincides with the appearance of large numbers of haploid round spermatids (1). Furthermore, we do not detect mos transcripts in testes of sterile mouse mutants in which differentiation of the germ cells does not proceed beyond premeiotic stages (Propst et al., manuscript in preparation). Haploid gene expression has previously been reported for other genes specifically expressed in the testes, including phosphoglycerate kinase-2 and the proto-oncogene c-abl (10, 13, 19, 31, 42). Our expression results confirm those previously reported for c-abl (31). Interestingly, in our cell fractionation experiments we obtained a fraction of round and multinucleated round spermatids (fraction 4) that expressed the 1.7-kb mos transcripts but not the testis-specific c-abl and actin transcripts (Fig. 7). The spermatids elutriated in this fraction differ from those in fractions 2 and 3 in sedimentation behavior and gene expression. Thus, they are biochemically distinct and may represent a novel round spermatid cell type.

c-mos transcripts are also found in ovaries, and again the level of expression changes during the postnatal development. Consistent with the assumption that mos is expressed in oocytes, the postnatal decrease in the level of the 1.4-kb mos transcripts could be explained by an increase in the number of somatic cells and a decrease in the number of oocytes in the developing and aging ovary (30). On the other hand, the number of oocytes decreases approximately twofold during the first 3 weeks of life (30), a change not reflected by the level of mos transcription during this period of time. Thus, additional factors might contribute to the observed pattern of mos expression.

ACKNOWLEDGMENTS

We thank T. G. Wood for stimulating discussions and S. R. Farmer for the generous gift of the β-globin clone.

A.I. is the recipient of a Lady Tata Leukaemia Research Fellowship. This research was sponsored by Public Health Service con-
tract NO1-CO-23909 between Bionetics Research, Inc., and the National Cancer Institute.

LITERATURE CITED

