Spotlight
Research Articles
- Research Article | SpotlightHistone Citrullination Represses MicroRNA Expression, Resulting in Increased Oncogene mRNAs in Somatolactotrope Cells
Peptidylarginine deiminase (PAD) enzymes convert histone arginine residues into citrulline to modulate chromatin organization and gene expression. Although PADs are expressed in anterior pituitary gland cells, their functional role and expression in pituitary adenomas are unknown.
- Research ArticleThe Cytotoxicity of Epsilon Toxin from Clostridium perfringens on Lymphocytes Is Mediated by MAL Protein Expression
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein that crosses the blood-brain barrier, binds to myelin, and, hence, has been suggested to be a putative agent for the onset of multiple sclerosis, a demyelinating neuroinflammatory disease. Recently, myelin and lymphocyte (MAL) protein has been identified to be a key protein in the cytotoxic...
- Research Article | SpotlightIdentification of a Novel Enhancer/Chromatin Opening Element Associated with High-Level γ-Globin Gene Expression
The organization of the five β-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5′ end, followed by the two fetal γ-globin genes, and with the adult β- and δ-globin genes being located at the 3′ end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS)....
- Research ArticleThe N Termini of TAR DNA-Binding Protein 43 (TDP43) C-Terminal Fragments Influence Degradation, Aggregation Propensity, and Morphology
Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics.
- Research ArticleRibosomal RACK1:Protein Kinase C βII Phosphorylates Eukaryotic Initiation Factor 4G1 at S1093 To Modulate Cap-Dependent and -Independent Translation Initiation
Eukaryotic ribosomes contain the high-affinity protein kinase C βII (PKCβII) scaffold, receptor for activated C kinase (RACK1), but its role in protein synthesis control remains unclear. We found that RACK1:PKCβII phosphorylates eukaryotic initiation factor 4G1 (eIF4G1) at S1093 and eIF3a at S1364.
- Research ArticleRibosomal RACK1:Protein Kinase C βII Modulates Intramolecular Interactions between Unstructured Regions of Eukaryotic Initiation Factor 4G (eIF4G) That Control eIF4E and eIF3 Binding
The receptor for activated C kinase (RACK1), a conserved constituent of eukaryotic ribosomes, mediates phosphorylation of eukaryotic initiation factor 4G1(S1093) [eIF4G1(S1093)] and eIF3a(S1364) by protein kinase C βII (PKCβII) (M. I.
Masthead
- MastheadEditorial Board




