Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing.

M M Harpold, M C Wilson, J E Darnell Jr
M M Harpold
Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M C Wilson
Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E Darnell Jr
Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.1.2.188
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We have further analyzed the metabolism of specific messenger ribonucleic acid (mRNA) sequences within the cytoplasmic and nuclear RNA of Chinese hamster ovary (CHO) cells by using a set of previously constructed complementary deoxyribonucleic acid (DNA) clones (Harpold et al., Cell 17:1025-1035, 1979) as specific molecular probes in a variety of RNA:DNA hybridization experiments. The majority of the labeled mRNA complementary to each of the nine clones was found in the polyribosomes, with some variation between individual sequences. The great majority of each specific mRNA labeled for 3 h or less was in the polyadenylated [poly(A)+] fraction. However, the amount of each sequence increased in the non-poly(A)+ [poly(A)-] fraction after very long label times, suggesting the derivation of the poly(A)- RNA from the poly(A)+ RNA. Eight of the nine mRNA's have cytoplasmic half-lives ranging from 8 to 14 h, whereas one of the mRNA's, the scarcest in the group, has a somewhat shorter half-life of approximately 3 h. The proportion of each of the specific long-lived mRNA's within the total labeled mRNA increased as a function of labeling time, indicating that a large fraction, probably greater than 50%, of the initially labeled poly(A)+ mRNA in CHO cells has a half-life of less than 3 h. A quantitative analysis of the kinetics of labeling of specific nuclear and cytoplasmic sequences indicated that a significant fraction of the mRNA sequences transcribed from genes containing these nine CHO sequences were successfully processed into mRNA. However, two of the CHO mRNA sequences were only partially conserved during nuclear processing to yield mRNA. These studies demonstrated that events at two post-transcriptional levels, differential nuclear processing efficiency of different primary transcripts and cytoplasmic stability of different mRNA's, can be involved in the determination of the cytoplasmic concentrations of different mRNA's.

PreviousNext
Back to top
Download PDF
Citation Tools
Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing.
M M Harpold, M C Wilson, J E Darnell Jr
Molecular and Cellular Biology Feb 1981, 1 (2) 188-198; DOI: 10.1128/MCB.1.2.188

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing.
M M Harpold, M C Wilson, J E Darnell Jr
Molecular and Cellular Biology Feb 1981, 1 (2) 188-198; DOI: 10.1128/MCB.1.2.188
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549