Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

The core proteins A2 and B1 exist as (A2)3B1 tetramers in 40S nuclear ribonucleoprotein particles.

S F Barnett, T A Theiry, W M LeStourgeon
S F Barnett
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T A Theiry
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W M LeStourgeon
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.11.2.864
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The six "core" proteins of HeLa cell 40S nuclear ribonucleoprotein particles (hnRNP particles) package 700-nucleotide lengths of pre-mRNA into a repeating array of regular particles. We have previously shown that the C proteins exist as anisotropic tetramers of (C1)3C2 in 40S hnRNP particles and that each particle probably contains three such tetramers. We report here that proteins A2 and B1 also exist in monoparticles as (A2)3B1 tetramers and that each monoparticle contains at least three such tetramers. Proteins A2 and B1 dissociate from isolated monoparticles as a stable tetramer upon nuclease digestion. In low-salt gradients, the tetramers sediment at 6.8S, which is consistent with a mass of 145 kDa. In 200 mM salt, the concentration which dissociates these proteins from RNA, only 4.2S dimers exist in solution. Tetramers of (A2)3B1 possess the ability to package multiples of 700 nucleotides of RNA in vitro into an array of regular, 22.5-nm 43S particles. Unlike the in vitro assembly of intact 40S hnRNP, the (A2)3B1 tetramers assemble by means of a highly cooperative process. These findings indicate that the (A2)3B1 tetramers play a major role in hnRNP assembly and they further support the contention that 40S monoparticles are regular structures composed of three copies of three different tetramers, i.e., 3[(A1)3B2, (A2)3B1, (C1)3C2].

PreviousNext
Back to top
Download PDF
Citation Tools
The core proteins A2 and B1 exist as (A2)3B1 tetramers in 40S nuclear ribonucleoprotein particles.
S F Barnett, T A Theiry, W M LeStourgeon
Molecular and Cellular Biology Feb 1991, 11 (2) 864-871; DOI: 10.1128/MCB.11.2.864

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The core proteins A2 and B1 exist as (A2)3B1 tetramers in 40S nuclear ribonucleoprotein particles.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The core proteins A2 and B1 exist as (A2)3B1 tetramers in 40S nuclear ribonucleoprotein particles.
S F Barnett, T A Theiry, W M LeStourgeon
Molecular and Cellular Biology Feb 1991, 11 (2) 864-871; DOI: 10.1128/MCB.11.2.864
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549