Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.

M S Swanson, E A Malone, F Winston
M S Swanson
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E A Malone
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Winston
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.11.6.3009
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

This article has a correction. Please see:

  • SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. - August 01, 1991

ABSTRACT

Mutations in the SPT5 gene of Saccharomyces cerevisiae were isolated previously as suppressors of delta insertion mutations at HIS4 and LYS2. In this study we have shown that spt5 mutations suppress the his4-912 delta and lys2-128 delta alleles by altering transcription. We cloned the SPT5 gene and found that either an increase or a decrease in the copy number of the wild-type SPT5 gene caused an Spt- phenotype. Construction and analysis of an spt5 null mutation demonstrated that SPT5 is essential for growth, suggesting that SPT5 may be required for normal transcription of a large number of genes. The SPT5 DNA sequence was determined; it predicted a 116-kDa protein with an extremely acidic amino terminus and a novel six-amino-acid repeat at the carboxy terminus (consensus = S-T/A-W-G-G-A/Q). By indirect immunofluorescence microscopy we showed that a bifunctional SPT5-beta-galactosidase protein was located in the yeast nucleus. This molecular analysis of the SPT5 gene revealed a number of interesting similarities to the previously characterized SPT6 gene of S. cerevisiae. These results suggest that SPT5 and SPT6 act in a related fashion to influence essential transcriptional processes in S. cerevisiae.

PreviousNext
Back to top
Download PDF
Citation Tools
SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
M S Swanson, E A Malone, F Winston
Molecular and Cellular Biology Jun 1991, 11 (6) 3009-3019; DOI: 10.1128/MCB.11.6.3009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
Share
SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
M S Swanson, E A Malone, F Winston
Molecular and Cellular Biology Jun 1991, 11 (6) 3009-3019; DOI: 10.1128/MCB.11.6.3009
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549