Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon.

H J Yoon, T F Donahue
H J Yoon
Department of Biology, Indiana University, Bloomington 47405.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T F Donahue
Department of Biology, Indiana University, Bloomington 47405.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.12.1.248
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We initiated a genetic reversion analysis at the HIS4 locus to identify components of the translation initiation complex that are important for ribosomal recognition of an initiator codon. Three unlinked suppressor loci, suil, sui2, and SUI3, that restore expression of both HIS4 and HIS4-lacZ in the absence of an AUG initiator codon were identified. In previous studies, it was demonstrated that the sui2 and SUI3 genes encode mutated forms of the alpha and beta subunits, respectively, of eukaryotic translation initiation factor 2 (eIF-2). In this report, we describe the molecular and biochemical characterizations of the sui1 suppressor locus. The DNA sequence of the SUI1+ gene shows that it encodes a protein of 108 amino acids with a calculated Mr of 12,300. The sui1 suppressor genes all contain single base pair changes that alter a single amino acid within this 108-amino-acid sequence. sui1 suppressor strains that are temperature sensitive for growth on enriched medium have altered polysome profiles at the restrictive temperature typical of those caused by alteration of a protein that functions during the translation initiation process. Gene disruption experiments showed that the SUI1+ gene encodes an essential protein, and antibodies directed against the SUI1+ coding region identified a protein with the predicted Mr in a ribosomal salt wash fraction. As observed for sui2 and SUI3 suppression events, protein sequence analysis of His4-beta-galactosidase fusion proteins produced by sui1 suppression events indicated that a UUG codon is used as the site of translation initiation in the absence of an AUG start codon in HIS4. Changing the penultimate proline codon 3' to UUG at his4 to a Phe codon (UUC) blocks aminopeptidase cleavage of the amino-terminal amino acid of the His4-beta-galactosidase protein, as noted by the appearance of Met in the first cycle of the Edman degradation reaction. The appearance of Met in the first cycle, as noted, in either a sui1 or a SUI3 suppressor strain showed that the mechanism of suppression is the same for both suppressor genes and allows the initiator tRNA to mismatch base pair with the UUG codon. This suggests that the Sui1 gene product performs a function similar to that of the beta subunit of eIF-2 as encoded by the SUI3 gene. However, the Sui1 gene product does not appear to be a required subunit of eIF-2 on the basis of purification schemes designed to identify the GTP-dependent binding activity of eIF-2 for the initiator tRNA. In addition, suppressor mutations in the sui1 gene, in contrast to suppressor mutations in the sui2 or SUI3 gene, do not alter the GTP-dependent binding activity of the eIF-2. The simplest interpretation of these studies is that the sui1 suppressor gene defines an additional factor that functions in concert with eIF-2 to enable tRNAiMet to establish ribosomal recognition of an AUG initiator codon.

PreviousNext
Back to top
Download PDF
Citation Tools
The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon.
H J Yoon, T F Donahue
Molecular and Cellular Biology Jan 1992, 12 (1) 248-260; DOI: 10.1128/MCB.12.1.248

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon.
H J Yoon, T F Donahue
Molecular and Cellular Biology Jan 1992, 12 (1) 248-260; DOI: 10.1128/MCB.12.1.248
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549