Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA.

M T Killeen, J F Greenblatt
M T Killeen
Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F Greenblatt
Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.12.1.30
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

RAP30/74 is a human general transcription factor that binds to RNA polymerase II and is required for initiation of transcription in vitro regardless of whether the promoter has a recognizable TATA box (Z. F. Burton, M. Killeen, M. Sopta, L. G. Ortolan, and J. F. Greenblatt, Mol. Cell. Biol. 8:1602-1613, 1988). Part of the amino acid sequence of RAP30, the small subunit of RAP30/74, has limited homology with part of Escherichia coli sigma 70 (M. Sopta, Z. F. Burton, and J. Greenblatt, Nature (London) 341:410-414, 1989). To determine which sigmalike activities of RAP30/74 could be attributed to RAP30, we purified human RAP30 and a RAP30-glutathione-S-transferase fusion protein that had been produced in E. coli. Bacterially produced RAP30 bound to RNA polymerase II in the absence of RAP74. Both partially purified natural RAP30/74 and recombinant RAP30 prevented RNA polymerase II from binding nonspecifically to DNA. In addition, nonspecific transcription by RNA polymerase II was greatly inhibited by RAP30-glutathione-S-transferase. DNA-bound RNA polymerase II could be removed from DNA by partially purified RAP30/74 but not by bacterially expressed RAP30. Thus, the ability of RAP30/74 to recruit RNA polymerase II to a promoter-bound preinitiation complex may be an indirect consequence of its ability to suppress nonspecific binding of RNA polymerase II to DNA.

PreviousNext
Back to top
Download PDF
Citation Tools
The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA.
M T Killeen, J F Greenblatt
Molecular and Cellular Biology Jan 1992, 12 (1) 30-37; DOI: 10.1128/MCB.12.1.30

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA.
M T Killeen, J F Greenblatt
Molecular and Cellular Biology Jan 1992, 12 (1) 30-37; DOI: 10.1128/MCB.12.1.30
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549