Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes.

T Z Su, C D Logsdon, D L Oxender
T Z Su
Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C D Logsdon
Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Oxender
Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.12.12.5281
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

In freshly prepared uninjected folliculated oocytes, Na(+)-independent leucine uptake is mediated predominantly by a system L-like transport system. Removal of follicular cells, however, results in an irreversible loss of this transport activity. When total poly(A)+ mRNA derived from Chinese hamster ovary (CHO) cells was injected into prophase-arrested stage V or VI Xenopus laevis oocytes, enhanced expression of Na(+)-independent leucine transport was observed. The injected mRNAs associated with increased levels of leucine uptake were between 2 and 3 kb in length. The newly expressed leucine transport activity exhibited important differences from the known characteristics of system L, which is the dominant Na(+)-independent leucine transporter in CHO cells as well as in freshly isolated folliculated oocytes. The CHO mRNA-dependent leucine uptake in oocytes was highly sensitive to the cationic amino acids lysine, arginine, and and ornithine (> 95% inhibition). As with the leucine uptake, an enhanced lysine uptake was also observed in size-fractionated CHO mRNA-injected oocytes. The uptakes of leucine and lysine were mutually inhibitable, suggesting that the newly expressed transporter was responsible for uptakes of both leucine and lysine. The inhibition of uptake of lysine by leucine was Na+ independent, thus clearly distinguishing it from the previously reported endogenous system y+ activity. Furthermore, the high sensitivity to tryptophan of the CHO mRNA-dependent leucine transport was in sharp contrast to the properties of the recently cloned leucine transport-associated gene from rat kidney tissue, although leucine transport from both sources was sensitive to cationic amino acids. Our results suggest that there may be a family of leucine transporters operative in different tissues and possibly under different conditions.

PreviousNext
Back to top
Download PDF
Citation Tools
Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes.
T Z Su, C D Logsdon, D L Oxender
Molecular and Cellular Biology Dec 1992, 12 (12) 5281-5287; DOI: 10.1128/MCB.12.12.5281

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes.
T Z Su, C D Logsdon, D L Oxender
Molecular and Cellular Biology Dec 1992, 12 (12) 5281-5287; DOI: 10.1128/MCB.12.12.5281
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549