Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired.

S Majumder, M L DePamphilis
S Majumder
Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M L DePamphilis
Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.14.6.4258
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Herpes simplex virus (HSV) thymidine kinase (tk) promoter activity depends on four transcription factor binding sites, one of which is a TATA box sequence, and the presence of either a cis-acting enhancer sequence or a transactivator protein. Studies presented here show that this TATA box was required for promoter activity only after cells began to differentiate and then only when promoter activity was stimulated by either an enhancer or a transactivator. When the HSV tk promoter was utilized by mouse embryos from the one-cell to eight-cell stage of development or by undifferentiated mouse embryonic stem cells, disruption of the HSV tk TATA box by site-specific mutations did not reduce promoter activity. This was true even when HSV tk promoter activity was stimulated strongly by either the embryo-responsive polyomavirus F101 enhancer or its natural transactivator, the HSV ICP4 gene product. However, stimulated expression was dependent on a distal Sp1 DNA binding site. Similarly, disruption of the TATA box did not reduce tk promoter activity in primary mouse embryonic fibroblasts or in immortalized 3T3 mouse fibroblasts; in fact, promoter activity was increased up to 2.6-fold. However, in these differentiated cells, stimulation of the HSV tk promoter by either the F101 enhancer or ICP4 protein required the TATA box. HSV tk promoter activity also was dependent on its TATA box in the mouse oocyte, a terminally differentiated cell with an endogenous transactivating activity. These results reveal that the need for a TATA box is developmentally acquired and depends on at least two parameters: the differentiated state of the cell and stimulation of the promoter by either an enhancer or a transactivator.

PreviousNext
Back to top
Download PDF
Citation Tools
TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired.
S Majumder, M L DePamphilis
Molecular and Cellular Biology Jun 1994, 14 (6) 4258-4268; DOI: 10.1128/MCB.14.6.4258

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired.
S Majumder, M L DePamphilis
Molecular and Cellular Biology Jun 1994, 14 (6) 4258-4268; DOI: 10.1128/MCB.14.6.4258
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549