Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Mutations that alter ligand-induced switches and dimerization activities in the retinoid X receptor.

X K Zhang, G Salbert, M O Lee, M Pfahl
X K Zhang
Cancer Research Center, La Jolla Cancer Research Foundation, California 92037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Salbert
Cancer Research Center, La Jolla Cancer Research Foundation, California 92037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M O Lee
Cancer Research Center, La Jolla Cancer Research Foundation, California 92037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Pfahl
Cancer Research Center, La Jolla Cancer Research Foundation, California 92037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.14.6.4311
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The retinoid X receptor (RXR) heterodimerizes with a variety of nuclear receptors. In addition, RXR forms homodimers in the presence of its ligand, 9-cis-retinoic acid. From deletion and point mutation analysis we present evidence that a short region (amino acids 413 to 443) in the carboxy terminus of RXR alpha is critical for both homo- and heterodimeric interactions as well as for diverse functional activities. In addition, we present evidence that homo- and heterodimer functions can be separated. The deletion of 19 amino acids from the C-terminal end of RXR dramatically reduced the transcriptional activation function of RXR. The removal of 10 additional amino acids resulted in a receptor (delta RXR3) that had completely lost its ligand-dependent homodimer function but retained its heterodimer activities. Heterodimer function was abolished by the deletion of an additional 20 amino acids. Single amino acid substitutions in the region generated receptors with altered RXR homodimer DNA binding, while simultaneous mutation of three Leu residues (Leu-418, -419 and -422) completely abolished both RXR homodimer and heterodimer DNA binding activities. Mutation of Leu-430 to Phe (L430-F) resulted in a receptor that bound to DNA strongly as homodimers in a ligand-independent manner, while another single amino acid exchange (L422-Q) led to a mutant that behaved in a manner exactly opposite to that of wild-type RXR in that the homodimerization of the mutant occurred in the absence of ligand and was inhibited by 9-cis-retinoic acid. In transfection assays, both L422-Q and L430-F failed to act as homodimers but retained their heterodimer function. Our studies demonstrate the unique properties of the RXR ligand binding domain and point to specific residues that mediate homo- and heterodimer activities and ligand-induced conformational switches.

PreviousNext
Back to top
Download PDF
Citation Tools
Mutations that alter ligand-induced switches and dimerization activities in the retinoid X receptor.
X K Zhang, G Salbert, M O Lee, M Pfahl
Molecular and Cellular Biology Jun 1994, 14 (6) 4311-4323; DOI: 10.1128/MCB.14.6.4311

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations that alter ligand-induced switches and dimerization activities in the retinoid X receptor.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mutations that alter ligand-induced switches and dimerization activities in the retinoid X receptor.
X K Zhang, G Salbert, M O Lee, M Pfahl
Molecular and Cellular Biology Jun 1994, 14 (6) 4311-4323; DOI: 10.1128/MCB.14.6.4311
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549