Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Functional differences between HOX proteins conferred by two residues in the homeodomain N-terminal arm.

M L Phelan, R Sadoul, M S Featherstone
M L Phelan
McGill Cancer Centre, McGill University, Montréal, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Sadoul
McGill Cancer Centre, McGill University, Montréal, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M S Featherstone
McGill Cancer Centre, McGill University, Montréal, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.14.8.5066
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Hox genes encode homeodomain-containing transcriptional regulators that function during development to specify positional identity along embryonic axes. The homeodomain is composed of a flexible N-terminal arm and three alpha helices, and it differentially binds DNA. A number of homeodomains recognize sites containing a TAAT core motif. The product of the murine Hoxd-4 (Hox-4.2) gene functions in a positive autoregulatory fashion in P19 cells that is dependent on two TAAT motifs in the Hoxd-4 promoter. This effect is specific in that murine HOXA-1 (HOX-1.6) is unable to activate transcription through the Hoxd-4 autoregulatory element. Here we show that this is due to an inability of the HOXA-1 homeodomain to bind a HOXD-4 recognition site effectively. We have produced chimeras between HOXD-4 and HOXA-1 to map specific residues responsible for this functional difference. When positions 2 and 3 in the N-terminal arm of HOXA-1 were converted to HOXD-4 identity, both strong DNA binding and transcriptional activation were rescued. This substitution appears to confer an increased DNA-binding ability on the HOXA-1 homeodomain, since we were unable to detect a high-affinity recognition sequence for HOXA-1 in a randomized pool of DNA probes. The contribution of position 3 to DNA binding has been implicated by structural studies, but this is the first report of the importance of position 2 in regulating homeodomain-DNA interactions. Additionally, specific homeodomain residues that confer major differences in DNA binding and transcriptional activation between Hox gene products have not been previously determined. Identity at these two positions is generally conserved among paralogs but varies between Hox gene subfamilies. As a result, these residues may be important for the regulation of target gene expression by specific Hox products.

PreviousNext
Back to top
Download PDF
Citation Tools
Functional differences between HOX proteins conferred by two residues in the homeodomain N-terminal arm.
M L Phelan, R Sadoul, M S Featherstone
Molecular and Cellular Biology Aug 1994, 14 (8) 5066-5075; DOI: 10.1128/MCB.14.8.5066

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional differences between HOX proteins conferred by two residues in the homeodomain N-terminal arm.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Functional differences between HOX proteins conferred by two residues in the homeodomain N-terminal arm.
M L Phelan, R Sadoul, M S Featherstone
Molecular and Cellular Biology Aug 1994, 14 (8) 5066-5075; DOI: 10.1128/MCB.14.8.5066
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549