Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain.

S Gugneja, J V Virbasius, R C Scarpulla
S Gugneja
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J V Virbasius
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R C Scarpulla
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.1.102
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Nuclear respiratory factor 2 (NRF-2) was previously purified to near homogeneity from HeLa cells on the basis of its ability to bind tandem recognition sites in the rat cytochrome oxidase subunit IV (RCO4) promoter. It consisted of five subunits, alpha, beta 1, beta 2, gamma 1, and gamma 2. Sequencing of tryptic peptides from alpha and from mixtures of the two beta or two gamma subunits revealed sequence identities with subunits of the mouse GA-binding protein (GABP), a ubiquitously expressed ETS domain activator composed of three subunits, alpha, beta 1, and beta 2. To understand the precise relationship between NRF-2 and GABP, cDNAs for all five NRF-2 subunits have now been cloned and their products have been overexpressed. The results establish that the two additional NRF-2 subunits are molecular variants that differ from GABP beta 1 and beta 2 by having a 12-amino-acid insertion containing two serine doublets. PCR and RNase protection assays show that mRNAs for these variants are expressed in the human but not the rodent cells and tissues examined. The insertion did not alter the ability of the beta and gamma subunits to associate with alpha, the DNA-binding subunit, nor did it affect the ability of NRF-2 beta 1 or beta 2 to direct high-affinity binding of alpha to tandem sites in the RCO4 promoter. In addition, the four NRF-2 beta and gamma subunits were equally proficient in activating transcription in transfected cells when fused to a GAL4 DNA-binding domain. The domain responsible for this transcriptional activation was localized by deletion mapping to a region of approximately 70 amino acids that is conserved in all four NRF-2 beta and gamma subunits. The repeated glutamine-containing hydrophobic clusters within this region bear a strong resemblance to those recently implicated in protein-protein interactions within the transcriptional apparatus.

PreviousNext
Back to top
Download PDF
Citation Tools
Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain.
S Gugneja, J V Virbasius, R C Scarpulla
Molecular and Cellular Biology Jan 1995, 15 (1) 102-111; DOI: 10.1128/MCB.15.1.102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain.
S Gugneja, J V Virbasius, R C Scarpulla
Molecular and Cellular Biology Jan 1995, 15 (1) 102-111; DOI: 10.1128/MCB.15.1.102
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549