Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential.

L A Dickinson, T Kohwi-Shigematsu
L A Dickinson
La Jolla Cancer Research Foundation, California 92037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Kohwi-Shigematsu
La Jolla Cancer Research Foundation, California 92037.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.1.456
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

A DNA affinity column containing a synthetic double-stranded nuclear matrix attachment region (MAR) was used to purify a 100-kDa protein from human erythroleukemia K562 cells. This protein was identified as nucleolin, the key nucleolar protein of dividing cells, which is thought to control rRNA gene transcription and ribosome assembly. Nucleolin is known to bind RNA and single-stranded DNA. We report here that nucleolin is also a MAR-binding protein. It binds double-stranded MARs from different species with high affinity. Nucleolin effectively distinguishes between a double-stranded wild-type synthetic MAR sequence with a high base-unpairing potential and its mutated version that has lost the unpairing capability but is still A+T rich. Thus, nucleolin is not merely an A+T-rich sequence-binding protein but specifically binds the base-unpairing region of MARs. This binding specificity is similar to that of the previously cloned tissue-specific MAR-binding protein SATB1. Unlike SATB1, which binds only double-stranded MARs, nucleolin binds the single-stranded T-rich strand of the synthetic MAR probe approximately 45-fold more efficiently than its complementary A-rich strand, which has an affinity comparable to that of the double-stranded form of the MAR. In contrast to the high selectivity of binding to double-stranded MARs, nucleolin shows only a small but distinct sequence preference for the T-rich strand of the wild-type synthetic MAR over the T-rich strand of its mutated version. The affinity to the T-rich synthetic MAR is severalfold higher than to its corresponding RNA and human telomere DNA. Quantitative cellular fractionation and extraction experiments indicate that nucleolin is present both as a soluble protein and tightly bound to the matrix, similar to other known MAR-binding proteins.

PreviousNext
Back to top
Download PDF
Citation Tools
Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential.
L A Dickinson, T Kohwi-Shigematsu
Molecular and Cellular Biology Jan 1995, 15 (1) 456-465; DOI: 10.1128/MCB.15.1.456

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential.
L A Dickinson, T Kohwi-Shigematsu
Molecular and Cellular Biology Jan 1995, 15 (1) 456-465; DOI: 10.1128/MCB.15.1.456
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549