Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
In Vitro | Journal Article | Research Support, U.S. Gov't, P.H.S.

Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids.

L Wu, J H Bayle, B Elenbaas, N P Pavletich, A J Levine
L Wu
Department of Molecular Biology, Princeton University, New Jersey 08544-1014.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J H Bayle
Department of Molecular Biology, Princeton University, New Jersey 08544-1014.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Elenbaas
Department of Molecular Biology, Princeton University, New Jersey 08544-1014.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N P Pavletich
Department of Molecular Biology, Princeton University, New Jersey 08544-1014.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A J Levine
Department of Molecular Biology, Princeton University, New Jersey 08544-1014.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.1.497
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The carboxy-terminal domain of the p53 protein comprising amino acid residues 311 to 393 is able to promote the reassociation of single-stranded RNA or DNA into duplex hybrids. This domain is as efficient as the intact p53 protein in both the rate and the extent of the double-stranded product produced in this reaction. Both wild-type and mutant p53 proteins from cancerous cells carry out this reaction. The monoclonal antibody PAb421, which detects an epitope between residues 370 and 378, blocks the ability of p53 to reassociate single strands of RNA or DNA. Similarly, the alternative splice form of the murine p53 protein, which removes amino acid residues 364 to 390 and replaces them with 17 new amino acids, does not carry out the reassociation reaction with RNA or DNA. This is the first indication of functionally distinct properties of the alternative splice forms of p53. These results suggest that this splice alternative can regulate a p53-mediated reaction that may be related to the functions of this protein.

PreviousNext
Back to top
Download PDF
Citation Tools
Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids.
L Wu, J H Bayle, B Elenbaas, N P Pavletich, A J Levine
Molecular and Cellular Biology Jan 1995, 15 (1) 497-504; DOI: 10.1128/MCB.15.1.497

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids.
L Wu, J H Bayle, B Elenbaas, N P Pavletich, A J Levine
Molecular and Cellular Biology Jan 1995, 15 (1) 497-504; DOI: 10.1128/MCB.15.1.497
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549