Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.

The BN51 protein is a polymerase (Pol)-specific subunit of RNA Pol III which reveals a link between Pol III transcription and pre-rRNA processing.

A J Jackson, M Ittmann, B F Pugh
A J Jackson
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Ittmann
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B F Pugh
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.1.94
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The three eukaryotic nuclear RNA polymerase (Pol) contain common and unique subunits. Cloning of the unique Pol III subunit genes in yeast cells has revealed a potential homolog in the mammalian system, the BN51 gene. The human BN51 gene was originally isolated as a suppressor of a temperature-sensitive cell cycle mutant of BHK cells (tsBN51). Although tsBN51 cells have a marked decrease in RNA Pol III activity at the nonpermissive temperature, direct biochemical evidence for the BN51 protein being a human Pol III subunit was lacking. Using antibodies directed against the BN51 protein, we show the following: (i) the BN51 protein copurifies with Pol III activity, (ii) Pol III activity can be specifically immunoprecipitated from HeLa nuclear extracts, and (iii) the immunopurified BN51 complex is active in restoring both nonspecific and promoter-specific Pol III activity. Our findings provide direct biochemical evidence for BN51 being a Pol III-specific subunit. Despite the fact that BN51 is not a subunit of Pol I, the production of mature Pol I transcripts is inhibited in tsBN51 cells at the nonpermissive temperature. tsBN51 cells appear defective in processing the 32S precursor rRNA into mature 5.8S and 28S rRNA at the nonpermissive temperature. We surmise that ribosome assembly has halted because of the loss of Pol III transcripts. Thus, there is regulation of the synthesis of mature Pol I transcripts by a posttranscriptional mechanism based on the availability of Pol III transcripts.

PreviousNext
Back to top
Download PDF
Citation Tools
The BN51 protein is a polymerase (Pol)-specific subunit of RNA Pol III which reveals a link between Pol III transcription and pre-rRNA processing.
A J Jackson, M Ittmann, B F Pugh
Molecular and Cellular Biology Jan 1995, 15 (1) 94-101; DOI: 10.1128/MCB.15.1.94

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The BN51 protein is a polymerase (Pol)-specific subunit of RNA Pol III which reveals a link between Pol III transcription and pre-rRNA processing.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The BN51 protein is a polymerase (Pol)-specific subunit of RNA Pol III which reveals a link between Pol III transcription and pre-rRNA processing.
A J Jackson, M Ittmann, B F Pugh
Molecular and Cellular Biology Jan 1995, 15 (1) 94-101; DOI: 10.1128/MCB.15.1.94
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549