Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.

P J Lapinskas, K W Cunningham, X F Liu, G R Fink, V C Culotta
P J Lapinskas
Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K W Cunningham
Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X F Liu
Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G R Fink
Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V C Culotta
Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.3.1382
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Mutants of Saccharomyces cerevisiae lacking a functional SOD1 gene encoding Cu/Zn superoxide dismutase (SOD) are sensitive to atmospheric levels of oxygen and are auxotrophic for lysine and methionine when grown in air. We have previously shown that these defects of SOD-deficient yeast cells can be overcome through mutations in either the BSD1 or BSD2 (bypass SOD defects) gene. In this study, the wild-type allele of BSD1 was cloned by functional complementation and was physically mapped to the left arm of chromosome VII. BSD1 is identical to PMR1, encoding a member of the P-type ATPase family that localizes to the Golgi apparatus. PMR1 is thought to function in calcium metabolism, and we provide evidence that PMR1 also participates in the homeostasis of manganese ions. Cells lacking a functional PMR1 gene accumulate elevated levels of intracellular manganese and are also extremely sensitive to manganese ion toxicity. We demonstrate that mutations in PMR1 bypass SOD deficiency through a mechanism that depends on extracellular manganese. Collectively, these findings indicate that oxidative damage in a eukaryotic cell can be prevented through alterations in manganese homeostasis.

PreviousNext
Back to top
Download PDF
Citation Tools
Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.
P J Lapinskas, K W Cunningham, X F Liu, G R Fink, V C Culotta
Molecular and Cellular Biology Mar 1995, 15 (3) 1382-1388; DOI: 10.1128/MCB.15.3.1382

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.
P J Lapinskas, K W Cunningham, X F Liu, G R Fink, V C Culotta
Molecular and Cellular Biology Mar 1995, 15 (3) 1382-1388; DOI: 10.1128/MCB.15.3.1382
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549