Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

The p53-mediated G1 checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papillomavirus type 16 E7 gene and EJ-ras.

J W Peacock, S Chung, R G Bristow, R P Hill, S Benchimol
J W Peacock
Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Chung
Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R G Bristow
Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R P Hill
Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Benchimol
Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.3.1446
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Rat embryo fibroblast clones transformed with the human papillomavirus type 16 E7 gene and the H-ras oncogene (ER clones) fall into two groups on the basis of endogenous p53 genotype, wild type or mutant. We have compared these clones with the aim of indentifying physiological differences that could be attributed to p53 protein function. We show that all ER clones, regardless of p53 gene status, are tumorigenic and metastatic in severe combined immunodeficiency mice. We demonstrate that only the wild-type p53 protein expressed in ER clones is functional on the basis of its site-specific double-stranded DNA-binding activity and its ability to confer a G1 delay on cells following treatment with ionizing radiation. These data indicate that disruption of the p53 growth-regulatory pathway is not a prerequisite for the malignant conversion of rat embryo fibroblasts expressing the E7 gene and mutant ras. Differences in phenotype that were correlated with loss of p53 protein function included the following: serum-independent growth of ER clones in culture, decreased tumor doubling time in vivo, and increased radioresistance. In addition, we demonstrate the p53-dependent G1 checkpoint alone does not determine radiosensitivity.

PreviousNext
Back to top
Download PDF
Citation Tools
The p53-mediated G1 checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papillomavirus type 16 E7 gene and EJ-ras.
J W Peacock, S Chung, R G Bristow, R P Hill, S Benchimol
Molecular and Cellular Biology Mar 1995, 15 (3) 1446-1454; DOI: 10.1128/MCB.15.3.1446

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The p53-mediated G1 checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papillomavirus type 16 E7 gene and EJ-ras.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The p53-mediated G1 checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papillomavirus type 16 E7 gene and EJ-ras.
J W Peacock, S Chung, R G Bristow, R P Hill, S Benchimol
Molecular and Cellular Biology Mar 1995, 15 (3) 1446-1454; DOI: 10.1128/MCB.15.3.1446
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549