Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.

Growth and developmental functions of a human immunodeficiency virus Tat-binding protein/26S protease subunit homolog from Dictyostelium discoideum.

J G Cao, R A Firtel
J G Cao
Department of Biology, University of California at San Diego, La Jolla 92093-0634.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Firtel
Department of Biology, University of California at San Diego, La Jolla 92093-0634.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.3.1725
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We have characterized a newly identified gene from Dictyostelium discoideum, DdTBP alpha, that encodes a member of the family of eukaryotic proteins. These proteins contain a conserved ATPase domain, include subunits of the 26S protease subunit, and are homologous to the mammalian human immunodeficiency virus Tat-binding protein TBP1. While information indicates that some family members are involved in the regulation of transcription in mammalian and yeast cells during growth, these proteins are also involved in other cellular functions, and nothing is known about their possible function in multicellular development. The Dictyostelium DdTBP alpha gene is developmentally regulated, with its expression at the highest levels occurring during growth and early development. The gene is present in two copies in the genome. Disruption of one copy by homologous recombination leads to aberrant morphogenesis, which lasts from the formation of the first finger until the onset of culmination. The gene appears to be essential for growth since we were unable to obtain a complete null phenotype and since expression of an inducible antisense construct in the partial null background resulted in cell death. Expression of the antisense construct during development accentuated the partial null phenotype and also resulted in very abnormal fruiting bodies. Overexpression of DdTBP alpha from its own promoter leads to very large multinucleated vegetative cells when the cells are grown in suspension culture. When the cells are plated onto petri dishes in growth medium, they rapidly split into multiple cells containing one to two nuclei, in a manner similar to that of wild-type cells. Overexpressing cells are significantly delayed in forming a multicellular aggregate, but development proceeds normally once the first finger stage is reached. The results indicate that DdTBP alpha plays an important role in regulating both growth and morphogenesis in D. discoideum.

PreviousNext
Back to top
Download PDF
Citation Tools
Growth and developmental functions of a human immunodeficiency virus Tat-binding protein/26S protease subunit homolog from Dictyostelium discoideum.
J G Cao, R A Firtel
Molecular and Cellular Biology Mar 1995, 15 (3) 1725-1736; DOI: 10.1128/MCB.15.3.1725

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Growth and developmental functions of a human immunodeficiency virus Tat-binding protein/26S protease subunit homolog from Dictyostelium discoideum.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Growth and developmental functions of a human immunodeficiency virus Tat-binding protein/26S protease subunit homolog from Dictyostelium discoideum.
J G Cao, R A Firtel
Molecular and Cellular Biology Mar 1995, 15 (3) 1725-1736; DOI: 10.1128/MCB.15.3.1725
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549