Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article

Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors.

G Jiang, L Nepomuceno, K Hopkins, F M Sladek
G Jiang
Environmental Toxicology Graduate Program, University of California, Riverside 92521, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Nepomuceno
Environmental Toxicology Graduate Program, University of California, Riverside 92521, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Hopkins
Environmental Toxicology Graduate Program, University of California, Riverside 92521, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F M Sladek
Environmental Toxicology Graduate Program, University of California, Riverside 92521, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.15.9.5131
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Hepatocyte nuclear factor 4 (HNF-4), a highly conserved member of the steroid hormone receptor superfamily critical for development and liver-specific gene expression, is very similar to another superfamily member, retinoid X receptor alpha (RXR alpha), in overall amino acid sequence and DNA binding specificity. Since RXR alpha is known to heterodimerize with many other nuclear receptors, the formation of heterodimers between HNF-4 and RXR alpha was examined. With the electrophoretic mobility shift assay, coimmunoprecipitation, and transient transfection assays, it is shown that, unlike other nuclear receptors, HNF-4 does not form heterodimers with RXR alpha either in the presence or in the absence of DNA. We also show that in vitro-translated HNF-4 does not form heterodimeric complexes on DNA with a number of other receptors, including RXR beta, RXR gamma, retinoic acid receptor alpha, or thyroid hormone receptor alpha. To investigate the hypothesis that the lack of heterodimerization between HNF-4 and RXR alpha is due to a strong homodimerization activity of HNF-4, glycerol gradient sedimentation and kinetic analysis were used to show that HNF-4 is in fact a stable homodimer in solution. Finally, immunohistochemistry is used to show that the HNF-4 protein is found exclusively in the nuclei in both HepG2 cells, which express endogenous HNF-4, and transfected COS cells, which overexpress HNF-4. These findings lead us to propose that HNF-4 defines a new subclass of nuclear receptors which reside primarily in the nucleus and which bind DNA and regulate transcription as homodimers.

PreviousNext
Back to top
Download PDF
Citation Tools
Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors.
G Jiang, L Nepomuceno, K Hopkins, F M Sladek
Molecular and Cellular Biology Sep 1995, 15 (9) 5131-5143; DOI: 10.1128/MCB.15.9.5131

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors.
G Jiang, L Nepomuceno, K Hopkins, F M Sladek
Molecular and Cellular Biology Sep 1995, 15 (9) 5131-5143; DOI: 10.1128/MCB.15.9.5131
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549