Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover.

Y Weng, K Czaplinski, S W Peltz
Y Weng
Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine, Piscataway 08854, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Czaplinski
Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine, Piscataway 08854, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S W Peltz
Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine, Piscataway 08854, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.16.10.5491
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

To understand the relationship between translation and mRNA decay, we have been studying how premature translation termination accelerates the degradation of mRNAs. In the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in the stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. Biochemical analysis of the wild-type Upf1p demonstrated that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. In the work described in the accompanying paper (Y. Weng, K. Czaplinski, and S. W. Peltz, Mol. Cell. Biol. 16:5477-5490, 1996) mutations in the helicase region of Upf1p that inactivated its mRNA decay function but prevented suppression of leu2-2 and tyr7-1 nonsense alleles are identified. On the basis of these results, we suggested that Upf1p is a multifunctional protein involved in modulating mRNA decay and translation termination at nonsense codons. If this is true, we predict that UPF1 mutations with the converse phenotype should be identified. In this report, we describe the identification and biochemical characterization of mutations in the amino-terminal cysteine- and histidine-rich region of Upf1p that have normal nonsense-mediated mRNA decay activities but are able to suppress leu2-2 and tyr7-1 nonsense alleles. Biochemical characterization of these mutant proteins demonstrated that they have altered RNA binding properties. Furthermore, using the two-hybrid system, we characterized the Upf1p-Upf2p interactions and demonstrated that Upf2p interacts with Upf3p. Mutations in the cysteine- and histidine-rich region of Upf1p abolish Upf1p-Upf2p interaction. On the basis of these results, the role of the Upf complex in nonsense-mediated mRNA decay and nonsense suppression is discussed.

PreviousNext
Back to top
Download PDF
Citation Tools
Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover.
Y Weng, K Czaplinski, S W Peltz
Molecular and Cellular Biology Oct 1996, 16 (10) 5491-5506; DOI: 10.1128/MCB.16.10.5491

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
Share
Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover.
Y Weng, K Czaplinski, S W Peltz
Molecular and Cellular Biology Oct 1996, 16 (10) 5491-5506; DOI: 10.1128/MCB.16.10.5491
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549