Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.

Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae.

L Hatfield, C A Beelman, A Stevens, R Parker
L Hatfield
Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C A Beelman
Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Stevens
Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Parker
Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.16.10.5830
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The decay of several yeast mRNAs occurs by a mechanism in which deadenylation precedes decapping and subsequent 5'-to-3' exonucleolytic decay. In order to identify gene products required for this process of mRNA turnover, we screened a library of temperature-sensitive strains for mutants with altered mRNA degradation. We identified seven mutations in four genes that inhibited mRNA turnover. Two mutations were alleles of the XRN1 5'-to-3' exoribonuclease known to degrade mRNAs following decapping. One mutation defined a new gene, termed DCP1, which in subsequent work was demonstrated to encode a decapping enzyme or a necessary component of a decapping complex. The other mutations defined two additional genes, termed MRT1 and MRT3 (for mRNA turnover). Mutations in the MRT1 and MRT3 genes slow the rate of deadenylation-dependent decapping, show transcript-specific effects on mRNA decay rates, and do not affect the rapid turnover of an mRNA containing an early nonsense codon, which is degraded by a deadenylation-independent decapping mechanism. Importantly, cell extracts from mrt1 and mrt3 strains contain normal levels of the decapping activity required for mRNA decay. These observations suggest that the products of the MRT1 and MRT3 genes function to modulate the rates of decapping that occur following deadenylation.

PreviousNext
Back to top
Download PDF
Citation Tools
Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae.
L Hatfield, C A Beelman, A Stevens, R Parker
Molecular and Cellular Biology Oct 1996, 16 (10) 5830-5838; DOI: 10.1128/MCB.16.10.5830

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
Share
Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae.
L Hatfield, C A Beelman, A Stevens, R Parker
Molecular and Cellular Biology Oct 1996, 16 (10) 5830-5838; DOI: 10.1128/MCB.16.10.5830
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549