Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Articles

Mammalian DET1 Regulates Cul4A Activity and Forms Stable Complexes with E2 Ubiquitin-Conjugating Enzymes

Elah Pick, On-Sun Lau, Tomohiko Tsuge, Suchithra Menon, Yingchun Tong, Naoshi Dohmae, Scott M. Plafker, Xing Wang Deng, Ning Wei
Elah Pick
1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
On-Sun Lau
1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomohiko Tsuge
2Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
3Biomolecular Characterization, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suchithra Menon
1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yingchun Tong
1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Naoshi Dohmae
3Biomolecular Characterization, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott M. Plafker
4Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xing Wang Deng
1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ning Wei
1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ning.wei@yale.edu
DOI: 10.1128/MCB.02432-06
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

DET1 (de-etiolated 1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis thaliana CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Human DET1 has recently been isolated as one of the DDB1- and Cul4A-associated factors, along with an array of WD40-containing substrate receptors of the Cul4A-DDB1 ubiquitin ligase. However, DET1 differs from conventional substrate receptors of cullin E3 ligases in both biochemical behavior and activity. Here we report that mammalian DET1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 associated 1), and a member of the UBE2E group of canonical ubiquitin-conjugating enzymes. DDD-E2 complexes interact with multiple ubiquitin E3 ligases. We show that the E2 component cannot maintain the ubiquitin thioester linkage once bound to the DDD core, rendering mammalian DDD-E2 equivalent to the Arabidopsis CDD complex. While free UBE2E-3 is active and able to enhance UbcH5/Cul4A activity, the DDD core specifically inhibits Cul4A-dependent polyubiquitin chain assembly in vitro. Overexpression of DET1 inhibits UV-induced CDT1 degradation in cultured cells. These findings demonstrate that the conserved DET1 complex modulates Cul4A functions by a novel mechanism.

  • Copyright © 2007 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Mammalian DET1 Regulates Cul4A Activity and Forms Stable Complexes with E2 Ubiquitin-Conjugating Enzymes
Elah Pick, On-Sun Lau, Tomohiko Tsuge, Suchithra Menon, Yingchun Tong, Naoshi Dohmae, Scott M. Plafker, Xing Wang Deng, Ning Wei
Molecular and Cellular Biology Jun 2007, 27 (13) 4708-4719; DOI: 10.1128/MCB.02432-06

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mammalian DET1 Regulates Cul4A Activity and Forms Stable Complexes with E2 Ubiquitin-Conjugating Enzymes
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Mammalian DET1 Regulates Cul4A Activity and Forms Stable Complexes with E2 Ubiquitin-Conjugating Enzymes
Elah Pick, On-Sun Lau, Tomohiko Tsuge, Suchithra Menon, Yingchun Tong, Naoshi Dohmae, Scott M. Plafker, Xing Wang Deng, Ning Wei
Molecular and Cellular Biology Jun 2007, 27 (13) 4708-4719; DOI: 10.1128/MCB.02432-06
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Carrier Proteins
Cullin Proteins
Ubiquitin-Conjugating Enzymes

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549