Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Tripartite sequences within and 3' to the sea urchin H2A histone gene display properties associated with a transcriptional termination process.

M R Johnson, C Norman, M A Reeve, J Scully, N J Proudfoot
M R Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Norman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Reeve
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Scully
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N J Proudfoot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.6.11.4008
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We have defined a DNA sequence that behaves as an RNA polymerase II termination signal by using the human HeLa cell transient expression system. Surprisingly, this sequence is tripartite, including part of the coding region of the sea urchin H2A histone gene together with two separate sequences in the 3' flanking region of the gene. We demonstrate that this signal functions both in its normal gene environment and also when placed within the human alpha-globin gene. However, we have failed to detect a discrete 3' terminus. Rather, our data indicate the presence of an extremely heterogeneous series of nonpolyadenylated RNAs. These heterogeneous nonpolyadenylated RNAs are stable when transcribed from the intact histone gene but are highly unstable within the human alpha-globin gene. This provides evidence for the role of poly(A) in the stability of mRNA.

PreviousNext
Back to top
Download PDF
Citation Tools
Tripartite sequences within and 3' to the sea urchin H2A histone gene display properties associated with a transcriptional termination process.
M R Johnson, C Norman, M A Reeve, J Scully, N J Proudfoot
Molecular and Cellular Biology Nov 1986, 6 (11) 4008-4018; DOI: 10.1128/MCB.6.11.4008

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Tripartite sequences within and 3' to the sea urchin H2A histone gene display properties associated with a transcriptional termination process.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Tripartite sequences within and 3' to the sea urchin H2A histone gene display properties associated with a transcriptional termination process.
M R Johnson, C Norman, M A Reeve, J Scully, N J Proudfoot
Molecular and Cellular Biology Nov 1986, 6 (11) 4008-4018; DOI: 10.1128/MCB.6.11.4008
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549