Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Molecular and Cellular Biology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About MCB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen.

B Massie, Y Gluzman, J A Hassell
B Massie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Gluzman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A Hassell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/MCB.6.8.2872
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Adenovirus-polyomavirus recombinant viruses were constructed in vitro by inserting a hybrid transcription unit composed of the adenovirus type 2 major late promoter and the early coding region of polyomavirus into the adenovirus type 5 vector Ad5 delta E1/dl309. The vector lacks the E1a and E1b transcription units and contains a unique restriction endonuclease cleavage site in their place. The polyomavirus genomic insert contained a small deletion which precluded the synthesis of functional small and middle T antigen but allowed for the synthesis of large T antigen. One recombinant virus, Ad5PyR39, which contained the hybrid transcription unit in the opposite transcriptional orientation from the overall direction of late-gene transcription, was studied in detail. Ad5PyR39 replicated efficiently without a helper virus in human 293 cells and expressed hybrid mRNAs of the expected size and composition that were translated to yield large T antigen. The large T antigen synthesized in 293 cells was the same size as that produced in mouse 3T6 cells lytically infected with polyomavirus, and this protein bound efficiently and specifically to the large-T-antigen-binding sites in polyomavirus DNA. Moreover, the large T antigen encoded by the recombinant virus proved capable of catalyzing the replication in mouse 3T6 cells of a plasmid containing the polyomavirus origin for DNA replication. Comparison of the amount of large T antigen produced in 3T6 cells infected with polyomavirus with that in 293 cells infected with Ad5PyR39, under optimal conditions for each system, revealed at least a fivefold greater yield of the protein on a per cell basis in the latter system compared with the former. Ad5PyR39 should prove to be useful to isolate large quantities of functional polyomavirus large T antigen for structural and biochemical studies.

PreviousNext
Back to top
Download PDF
Citation Tools
Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen.
B Massie, Y Gluzman, J A Hassell
Molecular and Cellular Biology Aug 1986, 6 (8) 2872-2883; DOI: 10.1128/MCB.6.8.2872

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Molecular and Cellular Biology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen.
(Your Name) has forwarded a page to you from Molecular and Cellular Biology
(Your Name) thought you would be interested in this article in Molecular and Cellular Biology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Construction of a helper-free recombinant adenovirus that expresses polyomavirus large T antigen.
B Massie, Y Gluzman, J A Hassell
Molecular and Cellular Biology Aug 1986, 6 (8) 2872-2883; DOI: 10.1128/MCB.6.8.2872
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About MCB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #MCBJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0270-7306; Online ISSN: 1098-5549