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gous leu2 diploid by a one-step gene replacement (56). Leu+
transformants were sporulated and dissected to assess the
fate of the haploid progeny.

All tetrads gave rise to four viable spores with 2:2 segre-
gation of Leu+:Leu- colonies. The Leu+ (Agasl::LEU2)
segregants gave rise to colonies significantly smaller than the
Leu- (GAS)) segregants (Fig. 5B). Quantitation in liquid
YPD medium revealed that the generation time of the mutant
was increased -20% compared with that of the wild type,
and we observed that mutant cells aggregated (data not
shown). Both phenotypes were reversed upon transforma-
tion of the gas) null mutant with a CEN plasmid bearing the
wild-type gene (data not shown). The mutant is not defective
for mating, sporulation, germination, secretion, or a-factor
internalization, nor does it show any significant temperature
sensitivity for growth.

Integration of the Agasl::LEU2 construct at the GAS)
locus was confirmed by Southern blot analysis. Leu- cells
contained the wild-type gene on a 1.9-kb fragment, whereas
Leu+ cells contained the disrupted allele, yielding a 3.3-kb
fragment of reduced intensity (Fig. 5C). Analysis of total
protein extracts confirmed that Leu+ segregants lacked
Gaslp (Fig. SD). Therefore, the GAS] gene is unique, and
the function of Gaslp is not essential for cell viability.
Comparison of mutant and wild-type protein profiles indi-

cated that lack of Gaslp affected the level of other proteins
(Fig. SE). A prominent band of -100 kDa was less abundant
in the gas) null mutant, whereas a band of -55 kDa was
enhanced. Preliminary results further suggest that mutant
cells secrete a -185-kDa protein that is not detected in
media of wild-type cultures. Therefore, we cannot exclude
the possibility that the phenotype of the gas) null mutant is
a consequence of altered expression, stability, or targeting of
other proteins.
The C-terminal hydrophobic domain of the Gaslp precur-

sor is essential for glycophospholipid anchor attachment. To
investigate the function of the C-terminal domain of Gaslp,
we analyzed mutant forms of the protein generated by
site-directed mutagenesis. The mutant genes were expressed
in the gas) null mutant, and the properties of the mutant
proteins were analyzed by using the TX-114 phase separa-
tion system and Western blotting.
Two alanine residues immediately downstream of the

proposed anchor attachment site (N-506) were replaced by a
glycine and serine residue, respectively (see Fig. 3). This
protein (designated (N5"GS) complemented the growth de-
fect of the gas) null mutant (data not shown). Addition of the
glycophospholipid anchor was not affected, as the protein
partitioned into the detergent phase and was released into
the aqueous phase by PI-PLC treatment (Fig. 6A, lanes 4 to
6; Fig. 6B, lanes 5 to 8).
A protein truncated at the C terminus, containing the

proposed anchor attachment site but lacking the entire
C-terminal hydrophobic domain (see Fig. 3), was next ana-
lyzed. This protein (N5"GSLstop) was secreted into the
medium during a 1-h incubation (Fig. 6A, lanes 7 to 9),
indicating that it failed to be attached to the membrane by
addition of the glycophospholipid anchor. The growth defect
of the gas) null mutant was not complemented by the
truncated gene (data not shown).
Another mutation (R526) was constructed to assess the

importance of the hydrophobic character of the C-terminal
domain. A positive charge was introduced into the stretch of
25 hydrophobic amino acids that constitute the C terminus of
Gaslp. The mutant gene did not complement the growth
defect of the gas) null mutant (data not shown), and the
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FIG. 6. Analysis of a truncated form of Gaslp. (A) Strain

RH273-1A (Agasl::LEU2) expressing wild-type Gaslp (lanes 1 to 3
and 10), the N506GS mutant (lanes 4 to 6), and the truncated
N506GSLstop protein (lanes 7 to 9) from a CEN vector (pCNYCG
and derivatives) were extracted by using the TX-114 phase separa-
tion system. Proteins (from 0.5 OD6. units of cells per lane)
recovered in the detergent (D) and aqueous (A) phases and proteins
secreted into the medium during a 1-h incubation (M) were precip-
itated and analyzed by Western blotting. (B) PI-PLC treatment of
detergent phases. The detergent phases containing wild-type Gaslp
(lanes 1 to 4) and the N5'GS mutant (lanes 4 to 8) were incubated in
the absence (-) or presence (+) of PI-PLC from B. cereus; phases
were separated and analyzed as described above. Positions of
molecular mass markers (in kilodaltons) are indicated on the left.

modified protein was not anchored to the membrane but
secreted into the medium during a 1-h incubation (Fig. 7,
lanes 4 to 6). In addition, a significant proportion of the
mutant protein was recovered as a -100-kDa species in the
aqueous phase of the cell extract (Fig. 7, lane 5). A minor
amount of a -100-kDa form was also present in the deter-
gent phase of wild-type extracts (Fig. 6A, lanes 1 and 10;
Fig. 7, lanes 1 and 7). Since this species represents the
core-glycosylated precursor of Gaslp (23a), it is conceivable
that the intracellular portion of the mutant protein represents
an analogous intermediate. However, the putative precursor
of the mutant protein partitioned into the aqueous phase and
was slightly larger than the wild-type species, which is
consistent with the view that the protein did not undergo
processing and anchor addition. The putative precursor of
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FIG. 7. Analysis of the Gaslp R526 mutant. The wild-type (lanes

1 to 3 and 7) and mutant (lanes 4 to 6) proteins were analyzed as

described in the legend to Fig. 6A.

the truncated protein (Fig. 6A, lane 8) was also recovered in
the aqueous phase, but it was slightly smaller than the
wild-type intermediate, presumably because of the absence
of the glycophospholipid moiety. Since precursors of the
mutant proteins seemed to accumulate, the mutations may

also affect transport of Gaslp along the secretory pathway.
Moreover, the molecular masses of both of the secreted
proteins were slightly greater than that of mature Gaslp.
This difference could reflect a difference in oligosaccharide
maturation between the membrane-bound and soluble pro-

tein species.

DISCUSSION

We have cloned the gene (GASJ) encoding the S. cerevi-
siae 125-kDa glycoprotein (Gaslp) that was previously
shown to be anchored to the lipid bilayer by an inositol-
containing glycophospholipid (17). Characterization of
Gaslp revealed that anchor attachment depends on the
integrity of a C-terminal stretch of hydrophobic amino acids
that is removed from the polypeptide during anchor addition.
Thus, processing of yeast Gaslp resembles that of protozoan
and mammalian proteins anchored to the membrane by a

GPI anchor. With a few exceptions, all GPI-anchored pro-

teins identified so far are attached to the external face of the
plasma membrane. In fact, apart from the mode of mem-

brane attachment, this seems to be the only feature common
to this functionally diverse set of proteins. The susceptibility
of the protein to protease treatment of intact cells indicates
that Gaslp also resides on the cell surface. It is interesting
that the distribution of GPI-anchored proteins has been
found to be particularly specific in polarized epithelial cells,
in which the proteins are confined to the apical domain of the
plasma membrane (9, 44, 45).
The primary structure of Gaslp exhibits a characteristic

pattern. As shown for most of the known GPI-anchored
proteins, Gaslp is initially synthesized with a cleavable
N-terminal signal sequence. The signal peptidase cleavage
site, which was determined by N-terminal sequence analysis
of mature Gaslp, is consistent with the rules postulated by
von Heijne (70). The polypeptide sequence of Gaslp can

account for only -50% of the molecular mass of the mature

protein, which migrates as a 125-kDa species in SDS-PAGE.
Part of this difference arises from N-linked glycosylation,

since the apparent molecular mass was reduced to 95 kDa
upon treatment with endoglycosidase H or F (17). In fact,
the sequence of GAS] predicts 10 potential N-linked glyco-
sylation sites. Therefore, it is probable that a large propor-
tion of these sites are actually used. The remaining molecu-
lar mass difference could be due to 0-linked glycosylation.
In fact, the protein contains a serine-rich region next to the
C-terminal hydrophobic domain (see below). Similar serine-
and/or threonine-rich regions located immediately external
to the membrane are known to be sites of clustered 0-linked
oligosaccharides in the low-density lipoprotein receptor (19),
the interleukin-2 receptor (42), and the complement regula-
tory protein DAF (10, 50). The functional significance of this
structural feature is unknown.
The serine-rich region of Gaslp is followed by a C-termi-

nal domain composed predominantly of hydrophobic amino
acids. In contrast to common membrane-spanning domains,
this C-terminal hydrophobic sequence is not followed by a
cluster of charged residues or a potential cytoplasmic do-
main. As an increasing number of genes encoding GPI-
anchored proteins have been cloned and sequenced, it is
now evident that these proteins are initially synthesized with
a C-terminal hydrophobic domain that is absent from the
mature proteins. According to the current model, the hydro-
phobic peptide is removed from the C terminus of the
proteins and replaced with the GPI moiety during anchor
addition. This was first established for different forms of the
variant surface glycoprotein of T. brucei (7, 32), the mam-
malian antigen Thy-1 (60, 68), and placental alkaline phos-
phatase (51, 53). To date, processing of the C-terminal
hydrophobic domain has been demonstrated for more than a
dozen distinct GPI-anchored proteins (15, 22, 27, 29, 35, 36,
47, 62, 65).
To determine the anchor attachment site of Gaslp, C-ter-

minal peptides were isolated and subjected to N-terminal
sequence analysis. Although we were unable to purify the
peptides to homogeneity, the sequencing information al-
lowed us to deduce that the glycophospholipid anchor is
most likely attached to N-506 of Gaslp. This deduction was
possible only because of the presence of multiple fragments
resulting from incomplete trypsin digestion. N-506 is located
immediately upstream of the C-terminal hydrophobic do-
main. By analogy to protozoan and mammalian proteins, this
is where one expects to find the anchor attachment site.
Micanovic et al. (52) have recently analyzed the selectivity
of the attachment site of placental alkaline phosphatase by
using site-directed mutagenesis. The results showed that 6 of
16 tested amino acids (D, G, A, C, N, and S) can serve as
attachment sites. These are the same amino acids found
naturally as attachment sites in known GPI-anchored pro-
teins. According to these studies, both N-506 and A-507 of
Gaslp are good candidates for the site of anchor addition.
However, amino acid composition analysis of the peptide
fractions revealed N (detected as D) but not A (data not
shown). Thus, N-506 fulfills a number of criteria for consid-
eration as the anchor attachment site of Gaslp, and we are
planning to further investigate the role of this residue by
using site-directed mutagenesis.
The identification of N-506 as the anchor attachment site

of Gaslp indicates that anchor addition involves the removal
of a hydrophobic peptide of 31 amino acids from the C
terminus of the polypeptide. This finding emphasizes the
resemblance of the mechanism over a wide spectrum of
organisms and supports the view that a common biosyn-
thetic pathway has been conserved during evolution. The
signals responsible for correct processing of GPI-anchored
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proteins might also be conserved. To analyze the function of
the C-terminal domain of Gaslp, we investigated a mutant
protein that lacks the C-terminal sequence flanking the
proposed attachment site. The protein did not undergo
anchor attachment; instead, it was secreted into the medium.
Thus, even though the C-terminal domain is ultimately
removed from the polypeptide, its presence in the primary
translation product is essential for anchor addition. To
investigate whether the hydrophobic character of this do-
main is important for function, we replaced L-526 in the
C-terminal hydrophobic sequence with R. Introduction of
this positive charge was sufficient to abolish anchor attach-
ment and resulted in secretion of the mutant protein. These
results are consistent with data on mammalian proteins (4,
11-13, 38, 41, 66, 73) suggesting that an essential determi-
nant for GPI anchor addition is located in the C-terminal
domain of the proteins; correct function of this determinant
depends on the hydrophobic character of the sequence.
At present, three other yeast proteins are candidates for

glycophospholipid anchoring on the basis of their predicted
protein sequences: a-agglutinin (28, 43), a cell surface pro-
tein involved in a/a cell agglutination during mating, the
KREJ protein (6), involved in cell wall synthesis, and the
YAP3 protein (21), an aspartyl protease, all terminate with a
hydrophobic stretch of amino acids. In the case of YAP3, the
sequence just upstream of the hydrophobic domain contains
a cluster of five serine and threonine residues followed by a
KRN sequence. This is similar to Gaslp, which has five
serine residues followed by a KKN sequence, where N is the
proposed site of anchor attachment. The sequences of
Gaslp, a-agglutinin, the KREJ protein, and the YAP3 pro-
tein show no other evident homology.

This study reports the sequence and characterization of
the first protein of S. cerevisiae that has been shown to be
attached to the membrane via a glycophospholipid anchor.
Our data provide additional evidence suggesting that the
mechanism of GPI anchor attachment and the signal respon-
sible for processing might be highly conserved throughout
evolution. We have constructed a gasi null mutant and
found that the function of Gaslp is not essential for cell
viability. Therefore, the mutant strain can be used as a
recipient to express mutant GAS] genes. This has permitted
the analysis of mutations that abolish anchor addition and
allowed us to conclude that attachment to the plasma mem-
brane is essential for Gaslp function. Eventually, we hope
that this system will enable us to use a genetic approach to
identify the genes involved in glycophospholipid anchor
attachment.
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