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FIG. 6. Ferric reductase activity (nanomoles of ferrous ions produced per 10° cells per hour; solid lines) and Ass, (dashed lines) of wild-type
(WT) and FRE mutant (frelA, fre2A, and frelA fre2A derivatives of MATa ura3-52 leu2-1) strains in relation to the duration of growth. Numbers
on the ordinate correspond to both nanomoles and Ass,. Cells were grown to saturation in minimal medium, washed in MD medium, and
resuspended in MD medium (open symbols) or in MD iron-supplemented medium (closed symbols) at a concentration of 4 X 106to 5 X 10° cells
per ml. The number of cells was estimated by counting on a Neubauer microscope slide. A linear relationship with the ODss, was established up
to an OD of 0.6 (number of cells = 10.24 X ODss, X 10°). Ferric reductase activity values were obtained from pelleted cells (triangles) after
preincubation in reductase buffer and from supernatant fractions (circles).

iron content of the medium. In contrast, clear differences were
detected among the four cultures when activities of the pel-
leted cells were assayed. The frelA fre2A strain showed prac-
tically no activity during the entire time course, whereas the
wild-type strain exhibited an iron-regulated activity that
reached maximum levels at 10 to 12 h with an approximately
25-fold difference between iron-rich and iron-deficient media.
The frelA strain showed a profile comparable to that of the
wild type quantitatively except that the activity reached a peak
somewhat later, at 12 h, and did so more abruptly. The fre2A
strain reached maximum levels in approximately 8 h and,
although it showed lower levels of activity than the wild-type
and frelA strains, it retained those levels for a longer period of
time. When the cultures entered the stationary phase, the
activity dropped even in the absence of iron.

The observed quantitative and qualitative differences (in
time and in height and width of activity curves) between the
frel A and fre2A strains were seen reproducibly in five indepen-
dent experiments. In two additional experiments, performed by
diluting exponentially grown cells (instead of saturated cul-
tures) in MD or MD iron-supplemented medium, we obtained
the same results as those shown in Fig. 6 except for shorter lag

times (data not shown). Therefore, the FRE1 and FRE2 genes
exhibit different ferric reductase activity profiles during culture
growth, the sum of which constitutes the membrane-bound
activity profile of the wild-type strain.

The FRE?2 transcript is highly inducible by iron deprivation.
It is clear from the findings presented that FRE2 gene activity
is regulated according to the iron content of the environment.
To examine whether this regulation is operative at the level of
mRNA accumulation, we performed RNA blot hybridization
analysis. For this analysis, we used polyadenylated RNA
because of the low abundance of the FRE2 message in total
cellular RNA. FRE2 mRNA was easily detected in RNA from
exponentially grown cells under iron starvation conditions,
whereas it was barely detectable in cells grown in the presence
of iron (Fig. 7). Longer exposures of the X-ray films permitted
a gross estimate of this difference, which is of the order of
50-fold or more. A FREI gene-specific probe and a HIS3-
DEDI-gene-specific probe were also used on duplicate sam-
ples of the filter hybridized with the FRE2 gene-specific probe
for quantitative comparisons. The HIS3-DEDI DNA probe
hybridized to mRNAs which are not regulated by iron and can
be considered internal controls for the amount of RNA loaded
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FIG. 7. Regulation of FRE2 mRNA accumulation by iron deter-
mined by blot hybridization analysis of polyadenylated RNA samples
isolated from cells grown exponentially for 12 h in MD medium (—) or
in MD iron-supplemented medium (+). Triplicate samples of the same
quantities were analyzed and hybridized to the indicated DNA probes.

on the gels. The FREI DNA probe reproduced the results of
Dancis et al. (9). Considering that similar quantities of polya-
denylated RNAs were loaded on the gels and the two probes
had similar specific activities, we can conclude that FRE] and
FRE2 mRNAs accumulated at comparable levels under the
growth conditions used.

The FRE2 promoter accounts for part of the iron-dependent
regulation of FRE2 expression. To examine whether the
iron-regulated accumulation of FRE2 mRNA occurs at the
level of RNA synthesis, we investigated the ability of the FRE2
promoter to direct regulated transcription in a heterologous
coding region. For that purpose, we used the GCN4 gene as a
reporter.

GCN4 is an S. cerevisiae transcriptional activator necessary
for the induction of amino acid biosynthetic genes under
amino acid starvation conditions. A gcn4 strain does not grow
in the presence of 3-AT, a competitive inhibitor of the HIS3
gene product (imidazoleglycerol-P dehydratase), whereas a
wild-type strain survives that stress by inducing the HIS3
transcription levels via GCN4 (12). A FRE2 DNA fragment
containing 156 bp upstream of the AUG (Fig. 3) was fused to
the S. cerevisiae GCN4 gene as described in Materials and
Methods. We also constructed a FRE1/GCN4 fusion gene as a
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BS150
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positive control, using a promoter fragment reported to be
sufficient for directing efficient and iron-regulated transcrip-
tion of a reporter gene (9). Both chimeric constructs were used
to transform a gcn4 strain. As shown in Fig. 8, the transformed
strains failed to grow on plates containing both 3-AT and iron,
whereas they grew on iron-depleted 3-AT plates. The FRE2
156-bp promoter fragment was the minimum tested region
(data not shown) able to direct the transcription of GCN4
mRNA in levels sufficient for the survival of the cells under
histidine starvation conditions but only in the iron-depleted
medium.

DISCUSSION

Ferric reductase is necessary for the iron supply of yeast
cells, which are capable of transporting only ferrous ions
through the plasma membrane. This study reveals all elements
which account for the total ferric reductase activity involved in
iron uptake in S. cerevisiae. These include two membrane-
bound ferric reductases and an excreted reductase activity.

We have cloned and molecularly characterized FRE2, a gene
responsible for a significant part of the ferric reductase activity
carried out by yeast cells, as shown by measurements of the
activity of the FRE2-disrupted strain. Analysis of the predicted
polypeptide sequence and comparisons with the sequences of
other ferric reductases indicated that FRE2 is an externally
directed transmembrane protein harboring domains which
function in electron transport. It is similar in structural and
functional characteristics to FRE1, the first ferric reductase to
be characterized in S. cerevisiae (9).

Deletion of both the FREI and FRE2 genes from the yeast
genome completely abolished the membrane-associated ferric
reductase activity, rendering the cell incapable of growing for
an extended period of time in iron-deficient media. However,
deletion of the FREI or FRE?2 gene separately did not change
the levels of reductase activity drastically, nor did it signifi-
cantly alter the growth rate of the cells in iron-deficient liquid
media. Moreover, the growth phenotype of both the frelA and
fre2A strains was similar to that of the wild-type strain in
iron-deficient solid media, indicating that each gene product
could substitute for the other at least qualitatively under the
experimental conditions used.

However, our detailed analysis of reductase activity in
growing yeast cultures revealed that the two genes are dis-

FRE2/GCN4

FRE1/GCN4

FIG. 8. Growth of MATa gcn4:A:URA3 ura3-52 leu2-1 cells transformed with the indicated plasmids (described in Materials and Methods) on
3-AT-containing MD plates in the presence (A) or absence (B) of iron. The plates were incubated at 30°C for 3 and 7 days, respectively, in order
to have a comparable growth phenotype of the C101-1 plasmid-containing strain.
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tinctly regulated. Each one accounts for more than 50% of the
total ferric reductase activity of the cells but at distinct time
points during exponential growth. For example, FRE2 ac-
counts for at least 80% of the activity after 12 h of growth in
iron-deficient media, whereas FRE] is responsible for more
than 65% of the wild-type activity after 3 to 4 h of growth. Our
results suggest a strong participation of the FRE2 gene in the
total reductase activity of the cell. Other reports attributed 80
to 98% of the total activity to the FREI gene (8, 9). However,
these authors measured ferric reductase activity either early or
very late following the passage of the cells to fresh media.
According to our results, under these conditions, low FRE2
activity should have been detected. Our data indicate that
another part of this discordance can be attributed to the fact
that we have made the distinction and measured separately the
activities of the membrane-associated and the excreted ferric
reductase forms. This latter activity is not at all negligible up to
at least 6 to 8 h of growth, accounting for most of the total
activity in the first 2 h of growth. It clearly interferes with the
total activity measured, and most importantly, it interferes to a
variable extent depending on the duration of incubation of the
cells for the reductase assay, thus rendering the correlation
between the ferric reductase activity and the time of incubation
not linear.

Taken together, our results give a more complete picture of
how yeast cells ensure the proper and external condition-
adjusted reduction of environmental ferric ions to ferrous ions
in order to be taken up intercellularly. We assume that the
excreted ferric reducing activity, which was found to be con-
siderable in early exponential growth, accounts for a significant
part of the total ferric reducing activity of the cell, necessary
for quick iron uptake when cells enter this early phase of
growth. This activity could satisfy the cell’s needs for iron in
newly synthesized proteins or for storage, the membrane-
associated reducing activities being still repressed at that stage.
On the other hand, two different genes account for the
membrane-associated ferric reductase activities of the cell
which are inducible and active after the onset of exponential
growth.

Our present data do not reveal the elements that regulate
the temporally different expression of the two FRE genes. Our
RNA blot hybridization analysis of exponentially grown cells
showed that expression of the FRE2 gene is iron regulated at
the level of mRNA accumulation similarly to FREI gene
expression. Our preliminary promoter analysis of the FRE?2
gene defined a minimal region upstream of the AUG that is
capable of sustaining iron-regulated expression of a heterolo-
gous gene qualitatively, indicating that at least part of the
regulation of the FRE2 gene occurs at the level of transcrip-
tion. Although the 156-bp tested promoter fragment contains
the 5’ untranslated region of the FRE2 mRNA, it is unlikely
that this region includes elements that regulate the stability of
the chimeric product. Stability elements are mostly found in
the 3’ untranslated regions and, more rarely, within the coding
regions of the mRNAs (31). Quantitative analysis of the
contribution of different regions of the FRE2 promoter in
heterologous expression will identify specific regulatory ele-
ments. It is possible that different cis-acting elements contrib-
ute to the transcription of the two genes, accounting for their
differential regulation, since none of the elements identified by
Dancis et al. (9) in the FREI promoter exists in the 156-bp
promoter region of the FRE2 gene (and within 1 kb upstream
of the initiator AUG). The contribution of other posttranscrip-
tionally regulated steps to the expression of each gene remains
to be uncovered.

Several examples of functionally related proteins which
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exhibit few similarities throughout their sequences and more at
specific domains have been identified in S. cerevisize. Some
examples are the cyclin subunits CLN and CLB (32), members
of the $SSA4 subfamily of heat shock genes (5), and the RHO
family of guanine nucleotide-binding proteins (23). Moreover,
the complete sequencing of S. cerevisiae chromosome III
provided a general example for the existence of genes that
have redundant functions although they are not obviously
similar in structure (25). The FREI and FRE2 genes do not
show any significant similarity at the nucleotide level, and their
products have borderline similarity in amino acid sequence.
However, they have the same enzymatic function, which is also
reflected by the conservation of several potentially important
domains and by their strikingly similar distribution of hydro-
phobic and hydrophilic regions. The two genes have probably
derived from a common ancestor gene following extensive
nucleotide divergence. The only preserved sequences in their
products are those that ensure their enzymatic function and
membrane localization. Moreover, our results demonstrated
that the activities attributed to the two products are not simply
additive but contribute to a more complex functional relation-
ship. Although each one seemingly substitutes for the other,
the two have different roles at different phases of cell growth.
It is of great interest to understand the elements responsible
for the regulation of the two FRE genes in concordance with
the cellular needs for iron at different stages of growth.
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