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FIG. 5. Incubation of a ARIPI strain at 42°C causes a decline in the protein labeling pattern. SDS-PAGE of total cellular proteins labeled with [**S]methionine is
shown. The positions of the stress-inducible yeast heat shock proteins Hsp104p, Hsp82p, and Hsp70s are shown by arrows. (A) Wild-type, ARIPI, and rpbI-1 strains
were incubated for various times at 42 or 37°C, followed by a 5-min labeling with [**S]methionine. (B) Enlargement of a portion of the gel in panel A, showing the

delayed appearance of heat shock protein bands in the ARIPI strain at 42°C.

This implies that hs mRNA export is also incompletely inhib-
ited in the ARIPI strain at 42°C.

Nuclear export of specific transcripts is inhibited in a
DRIP1 strain at 42°C. We next examined three heat-shock-
inducible GFP constructs, all of which have a GFP open read-
ing frame (ORF) cloned downstream of the SSA4 promoter
and the SSA4 5’ UTR. pHS-GFP contained only the GFP
OREF; pHS-GFP-3" SSA4 contained the GFP ORF followed by
the SSA4 3’ UTR, and pHS-GFP*SSA4-3' SSA4 contained the
GFP OREF followed by the complete SSA4 ORF and SSA4 3’
UTR. All three constructs were transformed into the wild-type
and ARIPI strains, and mRNA export after heat shock was
monitored indirectly by Western blotting with o-GFP anti-
body. The time course of mRNA induction was verified by
primer extension using a GFP mRNA-specific primer.

None of the constructs produced any GFP mRNA or protein
under non-heat-shock conditions (Fig. 6A and data not
shown). However, all three hybrid mRNAs and their protein
products were readily detectable after a 5-min incubation of
the wild-type strain at 37 or 42°C or after a 5-min incubation of
the ARIP] strain at 37°C (Fig. 6A to C and data not shown).
The protein and mRNA accumulation continued for 60 min at
42°C, by which time it reached saturation. That induction of all
three hybrid mRNAs resulted in GFP synthesis at both 37 and
42°C indicates that these mRNAs are successfully exported
from the nucleus in wild-type cells under stress conditions (Fig.
6A to D). For all three mRNAs, the time courses of mRNA

and protein induction were similar, suggesting that mRNA
export kinetics under heat shock conditions does not depend
on any cis-acting sequences contained within the SSA4 ORF
and the SSA4 3’ UTR. In contrast to the situation in the wild
type, none of the three constructs produced detectable levels
of GFP in the ARIPI strain incubated at 42°C for up to 1 h
(Fig. 6A and C). As the level and timing of the hybrid mRNA
induction in the ARIP] strain is similar to that in the wild-type
strain (Fig. 6D), the absence of detectable protein product is
likely the result of an mRNA export block. The fact that the
block takes place at 42 but not at 37°C is consistent with
observations described earlier and strengthens the idea that
Riplp plays an important role in the nuclear export of most
mRNA, but only at temperatures higher than 37°C. For all
three constructs, we observed low levels of GFP in the ARIPI
strain after a 2- to 3-h incubation at 42°C (Fig. 6A and C and
data not shown). This resembles the late appearance of labeled
heat shock protein bands in the labeling time course experi-
ment (Fig. 5B) and probably reflects the incomplete inhibition
of mRNA export in the ARIPI strain at 42°C (see Discussion).

Using the experimental approach described above, we also
examined the nuclear export of a fully non-hs mRNA, tran-
scribed from a construct containing a bacterial B-galactosidase
gene under the control of a galactose promoter (pGal-LacZ).
After a 10- to 15-min preincubation at the relevant tempera-
ture, lacZ transcription was initiated by galactose, and the
incubation was continued at the same temperature. In the wild-
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FIG. 6. Three heat-shock-inducible SSA4-GFP hybrid mRNAs are efficiently exported in a wild-type strain but not a ARIPI strain at 42°C. (A, B, and C) Analysis
of GFP synthesis by immunoblotting with «-GFP antibody. The position corresponding to GFP is marked by the arrowhead. Lanes marked c are from cultures
maintained at 25°C. (A) Time course of GFP expression upon induction of HS-GFP and HS-GFP-3’ SSA4 mRNAs at 42°C in wild-type (WT) and ARIP]I strains. (B)
Time course of GFP expression upon induction of HS-GFP*SSA4-3" SSA4 mRNA at 37°C in wild-type and ARIPI strains. (C) Time course of GFP expression upon
induction of HS-GFP*SSA4-3" SSA4 mRNA at 42°C in wild-type and ARIP] strains. (D) Primer extension analysis of HS-GFP*SSA4-3" SSA4 mRNA induction at 42°C
in wild-type and ARIPI strains (the same experiment as in panel C). Denaturing PAGE analysis of primer extension products with GFP- and U2-specific primers is
shown. Positions corresponding to HS-GFP*SSA4-3" SSA4 mRNA and U2 RNA are marked by the upper and lower arrowheads, respectively.

type strain, the time courses of LacZ induction at 22, 37, and
42°C were similar (Fig. 7A and B), with protein amounts de-
creasing slightly at 42°C (Fig. 7C). In the ARIP]! strain at 22
and 37°C, LacZ was induced with the same kinetics and to the
same levels as in the wild type (Fig. 7C and data not shown).
For the ARIPI strain at 42°C, however, no LacZ was detected
even at 3 h after the addition of galactose (Fig. 7B and C). Like
the SSA4-GFP chimeric mRNAs, the level and timing of LacZ
mRNA induction in the ARIPI strain at 42°C was similar to
that in the wild type (Fig. 7D). Therefore, the absence of
detectable protein in the ARIPI strain is likely due to a block
in non-hs mRNA export at 42°C.

DISCUSSION

The original studies of mRNA export during stress in S.
cerevisiae suggested that hs mRNA is exported from the nu-
cleus via a unique route (39). Using in situ hybridization assays,
it was shown that exposure of yeast to 42°C or 10% ethanol
resulted in nuclear accumulation of non-hs mRNA, whereas
hs mRNA was efficiently exported to the cytoplasm. Hybrid
mRNAs identified two independent cis-acting sequences in
SSA4 mRNA that promote export of an Hsp70-like mRNA
under stress conditions (39). It was further shown that hs
mRNA export at 42°C is affected by deletion of the RIPI gene
and is not mediated by the GTPase Ran and its auxiliary
proteins (39, 40).

We originally set out to define additional factors mediating

this selective export of hs mRNA. However, we obtained data
indicating that hs mRNA export and non-hs mRNA export
are similar processes, a conclusion that contradicts some pre-
vious conclusions. Protein labeling and thermotolerance assays
showed that both export pathways are similarly inhibited at
42°Cin rnal-1, prp20-1, mex67-5, mtr2-9, rat7-1, and ANUPI116
strains. The results suggest that hs mRNA export, like non-hs
mRNA export, is Ran mediated. However, both rnal-1 and
prp20-1 have rapid and profound effects on many different
aspects of nuclear metabolism (2, 8), and the mRNA export
block might be indirect. Consistent with this possibility, a dom-
inant-negative Ran mutant has little effect on hs mRNA export
as determined by protein labeling (data not shown). The in-
terpretation notwithstanding, we suggest that the rnal-1 and
prp20-1 mutations cause equally strong blocks to hs mRNA
export and to non-hs mRNA export.

The discrepancy between this and previous observations (39,
40) can be explained at least in part by differences in the
experimental protocols. For example, the penetrance of the
ARIPI mutant phenotype is very sensitive to growth condi-
tions, reflecting an induction of heat shock protein synthesis
at moderate cell densities. In addition, many of the previous
studies used 10% ethanol to induce the stress response. We
have observed some differences between heat shock protein
synthesis induced by a shift to 42°C and that induced by eth-
anol addition (data not shown), indicating that this might also
impact differences in heat shock protein synthesis regulation.

In light of the rnal-1 and prp20-1 data, we decided to ad-
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FIG. 7. Nuclear export of galactose-inducible B-galactosidase (Gal-LacZ) mRNA is inhibited at 42°C in a ARIPI strain but not a wild-type strain. (A, B, and C)
LacZ protein was analyzed by immunoblotting it with a-B-galactosidase antibody. The position corresponding to the LacZ band is marked by an arrowhead. (A) Time
course of LacZ protein expression upon induction at 22 and 37°C in the wild type (WT). The lanes marked c are from cultures maintained at 22°C in the absence of
galactose induction. (B) Time course of LacZ protein expression upon induction at 42°C in wild-type and ARIPI strains. The lanes marked ¢ are from cultures treated
at 42°C but in the absence of galactose induction. (C) LacZ protein expression after 2-h incubation of wild-type and ARIPI strains at 22, 37, or 42°C, with or without
galactose induction. (D) Time course of induction of Gal-LacZ mRNA at 42°C in wild-type and ARIP]I strains (the same experiment as in panel B). Denaturing PAGE
analysis of extension products with a LacZ-specific primer is shown. The area occupied by multiple extension products is marked by a square bracket.

dress the issue of whether the nucleoporinlike protein Rip1p is
specific for the hs mRNA export pathway or whether the ex-
port of non-hs mRNA is also affected in the ARIPI strain. A
comparison of protein synthesis profiles in the wild-type and
ARIP] strains indicates that nuclear export of both hs and
non-hs mRNA is severely affected in the absence of Riplp at
42°C. The original inference, that the ARIP]I strain is defective
only in hs mRNA export, is probably due to the experimental
design. In the earlier experiments, cells were examined within
10 to 30 min after the shift to the nonpermissive temperature.
At these times, only the absence of heat shock proteins pro-
duced from newly transcribed hs mRNA is easily detected; any
block in non-hs mRNA export is masked by preexisting cyto-
plasmic mRNA. At longer incubation times, the cytoplasmic
mRNA turns over, and the export inhibition is visible. The
relatively slow decrease in the protein labeling pattern in the
ARIP] strain at 42°C (Fig. SA), as well as the appearance of
heat shock and hs promoter-derived bands at late times during
a 42°C incubation (Fig. 5B and 6C), suggests that the ARIP/
mRNA export block is incomplete. Although there may be
some modest difference between hs and non-hs mRNA export
efficiency in the ARIPI strain at 42°C, we suggest that the
ARIPI 42°C block to mRNA export affects most if not all
mRNAs similarly. This conclusion fits well with the genetic
interactions between RIP! and other genes (GLEI, DBP5, and
NUPS5) involved in the export of non-hs mRNA (46, 48). A
very recent study reached a similar conclusion for the mRNA
export factor Mex67p (15).

It should be noted, however, that the idea of a general role

of Riplp in mRNA export does not contradict previously de-
scribed observations of competition between hs mRNA and
the human immunodeficiency virus type 1 protein Rev for
nuclear exit (40). Rev is exported from the nucleus via inter-
actions with the B-karyopherin-like receptor Crm1p, which has
been shown to interact with Riplp (7, 31, 32). The normal heat
shock protein labeling pattern in the xpol-1 strain at 42°C (Fig.
2A), as well another recent study (32), argues that Crm1p plays
no prominent direct role in the export of either hs or non-hs
mRNA. Nevertheless, it is conceivable that different nuclear
export pathways converge below the level of Crmlp, so that
different export complexes compete for binding sites on Riplp
or on other relevant NPC components (e.g., Nup159). We still
do not known whether Riplp is a bona fide NPC component,
but we favor the notion that it is a transport factor with a more
transient pore association (46).

Our data more generally suggest that mRNA nuclear export
relies on many common factors, including the Ran system,
Mex67p, Mtr2p, and Riplp. A competition between different
mRNA molecules for common transport factors may lead
to the preferential export of more abundant mRNAs (i.e., hs
mRNA under stress conditions) or mRNAs that interact
more efficiently with generic transport machinery components.
There may also be message-specific factors or cis-acting RNA
elements that enhance or inhibit export of specific mRNAs in
a constitutive or regulated fashion. For example, it has recently
been suggested that the yeast hnRNP protein Np13p becomes
dissociated from non-hs mRNA upon stress, leading to abnor-
mal RNP formation and inefficient export of these mRNAs
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(22). There are many other examples of factors and cis-acting
sequences that contribute to the regulation of mRNA export.
These include the retroviral proteins Rev and Rex, the consti-
tutive transport element of D-type retroviral mRNAs, the Cae-
norhabditis elegans Zn finger protein TRA-1, the intronless
mRNA export elements within the mouse histone H2a mRNA,
elements within herpes simplex virus thymidine kinase mRNA
and hepatitis B virus RNA, and a retention element within C.
elegans splicing factor U2AF mRNA (11, 12, 14, 25, 49). In the
case of hs mRNA export under stress conditions, however, the
evidence in favor of positively acting transport factors and
elements is uncertain at best. We have been unable to detect a
contribution of the SSA4 ORF or the SSA4 3’ UTR to RNA
export. In addition, we have examined a set of GFP constructs
with no SSA4 sequences: addition of the SSA4 5" UTR, with or
without additional SSA4 sequences, has no effect (data not
shown). Of course, potent export of the basal GFP construct
might obscure a positive but more modest contribution of
SSA4 mRNA sequences.

The fact that Riplp is essential only at temperatures higher
than 37°C raises the intriguing possibility that the structure
and/or composition of the NPC-associated transport machin-
ery changes under conditions of more acute stress. We per-
formed protein labeling experiments with the ARIPI strain at
various temperatures and ethanol concentrations and observed
a gradual decline in heat shock protein labeling with increasing
stress. At 42°C, the absence of Riplp may adversely affect the
activities of other essential transport factors that normally in-
teract with it. Under conditions of mild stress, such as incuba-
tion at 37°C, this destabilization may not be very severe and/or
the function of Riplp is compensated for by other nucleo-
porinlike proteins. It is also conceivable that a Riplp-depen-
dent regulatory mechanism results in a modification of the
mRNA export machinery only under severe stress conditions.
Future studies will focus on understanding the role of Riplp
and its associated proteins in maintaining mRNA export under
stress conditions.
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