












tion of cyclin D1 promoter activity, experiments were con-
ducted with DNA-binding-defective mutant E2F-1 E132 or
activation-defective mutant E2F-1 Y411C. E2F-1 E132 func-
tions as a dominant inhibitor of E2F activity by dimerizing with
DP proteins and thereby blocking the DNA binding of the
active E2F-DP complex. E2F-1 Y411C binds competitively to
E2F binding sites and thereby blocks activation by wild-type
E2F-1. Overexpression of E2F-1 E132 or E2F-1 Y411C re-
duced the NeuT induction of cyclin D1 by 33 or 30%, respec-
tively (Fig. 6A). Similarly, the DP-1 dominant negative (DP-1
D103-126) reduced NeuT induction of cyclin D1 by 43% (Fig.
6A). In contrast, overexpression of the wild-type E2F-1 further
induced cyclin D1 promoter activity 2.6-fold (Fig. 6A). These
results are consistent with a requirement for E2F-1 for optimal
induction of cyclin D1 by NeuT.

As these results contrast with the inhibitory effect of E2F-1
on basal cyclin D1 promoter activity in trophoblastic cells and
fibroblasts (70), we assessed whether E2F-1 has a cell-type-
specific effect on basal activity of the 21745CD1LUC reporter
in MCF7 cells. E2F-1 induced the cyclin D1 promoter in
MCF7 cells 3.8-fold (Fig. 6B). Overexpression of either the
E2F-1 E132 mutant or the DP-1 dominant negative inhibited
the cyclin D1 promoter by 36 or 34%, respectively (Fig. 6B),
whereas the E2F-1 Y411C mutant had no effect (not shown).
To identify the DNA sequences required for induction of the
cyclin D1 promoter by E2F-1, cotransfection experiments were
conducted with the cyclin D1 promoter deletion constructs
(Fig. 6C). The induction by E2F-1 was maintained in the 2163
bp fragment but was lost upon point mutation of the E2F site
(2163 E2FmutLUC), suggesting that the E2F site is the region
required for optimal induction by E2F-1 overexpression (Fig.

6C). E2F-1 is therefore a positive regulator of cyclin D1 in
MCF7 cells.

The results presented above indicated that NeuT induced
the cyclin D1 promoter through an E2F binding site that
bound E2F-1 and was required for E2F-1 induction in MCF7
cells and through an Sp1 binding site that bound Sp1 and Sp3.
To understand how NeuT may induce cyclin D1 through the
E2F-1 and Sp1/Sp3 binding sequences, we tested whether
NeuT regulates E2F-1, Sp1, and Sp3 transactivation function.
The transactivation domains of these proteins were linked to
the GAL4 DNA binding domain. The NeuT-regulated activity
of Sp1 and E2F-1 was examined in conjunction with a heter-
ologous reporter construction, (UAS)5E1BTATALUC, con-
sisting of multimeric GAL4 DNA binding sites linked to a
luciferase reporter gene (Fig. 6D). E2F-1, Sp1, and Sp3 con-
veyed basal enhancer function in MCF7 cells, and overexpres-
sion of NeuT enhanced E2F-1 activity 6.3-fold. E2F-1 transac-
tivation function is regulated by the relative abundance of
pRB, and selected deletions within the carboxy-terminal pRB
binding domain abolish transcriptional regulation by pRB (22).
In contrast with GAL4–E2F-1, the carboxy-terminal E2F-1
mutant GAL4–E2F-1(D413-417) was not induced by NeuT.
Overexpression of NeuT induced Sp1 activity 37.5-fold and
Sp3 activity 11-fold. In contrast, the constitutively active GAL4
construct PAG236 was not induced by NeuT. Thus, NeuT
induces transactivation function of the transcription factors
binding to the neuT-responsive regions of the cyclin D1 pro-
moter.

Cyclin D1 antisense blocks NeuT-induced transformation.
The findings that cyclin D1 levels were induced in neu-induced
mammary gland tumors and that NeuT potently induced the

FIG. 5. Sp1/Sp3 and E2F-1 proteins bind the neuT-responsive elements of the cyclin D1 promoter. (A) The 32P-labeled cyclin D1 Sp1-like sequence was incubated
with MCF7 cell nuclear extracts, and the effects of 100-fold excess of cognate competitor (lane 2), wild-type canonical Sp1 binding site competitor (lane 3), and an
unrelated oligonucleotide competitor (lane 4) were determined. Specific antibodies to the Sp proteins or equal amounts of control IgG (lane 5) were added as indicated
above the lanes (lanes 5 to 10). Arrows indicate the predicted proteins constituting the bands (A to C) identified through supershift or inhibition of DNA binding. (B)
EMSA with extracts prepared from baculovirus-infected Sf9 cells. The 32P-labeled adenovirus E2F site (lanes 1 to 4) and wild-type (lanes 5 to 8) or mutant (lanes 9
to 10) cyclin D1 E2F sites were incubated with E2F and DP proteins as indicated above the lanes. Relative binding compared to the adenovirus E2F site for each
E2F-DP complex is indicated below each lane. (C) CHIP assays were performed with the 21745 CD1LUC MCF7 cell line or wild-type MCF7 cells (lanes 5 to 8). PCR
was performed with cyclin D1-specific primers on water (lane 2), control plasmid (lane 3), or immunoprecipitation buffer (lane 4) or after immunoprecipitation of
formaldehyde cross-linked cell extracts with either IgG control (lanes 5 and 7) or E2F-1-specific antibody (lanes 6 and 8). The specific cyclin D1 promoter band is shown
(arrow).
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cyclin D1 promoter raised the possibility that cyclin D1 is
required for NeuT-induced transformation. Transformation
assays were therefore performed with Rat-1 cells. NeuT (Fig.
7A) and RasL61 (not shown) both induced focus formation as
previously described (61). Experiments were conducted to as-

sess the involvement of cyclin D1 and several intracellular
signaling proteins involved in mitogenic signaling in NeuT-
induced transformation. Either a 1:1 or a 1:2 molar ratio of
NeuT plasmid (2.5 mg) to antisense or dominant negative ex-
pression plasmid was used (Fig. 7). In previous studies of
V12Ras-induced focus formation, the N17Rac plasmid was
used in the ratio of 1:250 (V12Ras:N17Rac) for 70% inhibition

FIG. 6. Induction of E2F-1, Sp1, and Sp3 transactivation by NeuT. The
effects of wild-type E2F-1, the E132 mutant E2F-1, the Y411C mutant E2F-1,
and the DP-1 dominant negative mutant on NeuT-induced (A) or basal (B)
cyclin D1 promoter activity were assessed in MCF7 cells and compared with
effects of the respective empty vectors. (C) The E2F-1 expression vector was
transfected with cyclin D1 59 promoter constructs into MCF7 cells. p represents
significant difference from the 2163CD1LUC reporter for P , 0.05. (D) Sche-
matic representation of the GAL4 constructs and the heterologous luciferase
reporter containing five upstream activator binding sites for the GAL4 DNA
binding domain. The reporter (UAS)5E1BTATALUC (2.4 mg) was transfected
with expression vectors for GAL4–E2F-1, GAL4–E2F-1(D413-417) (the pRB-
binding-defective E2F-1 mutant), GAL4-Sp1, GAL4-Sp3, PAG236, and either
pSV2NeuT (600 ng) or empty expression vector cassette in MCF7 cells. Com-
parison was made between the effect of the NeuT expression vector and equal
amounts of the parental vector. Data are mean fold induction 6 standard error
of the mean for the number of separate experiments indicated in parentheses.

FIG. 7. Cyclin D1 antisense inhibits neu-induced focus formation. Transfor-
mation assays were conducted with NeuT in Rat-1 cells. The activating NeuT
mutant (2.5 mg) was introduced alone or in conjunction with one of the antisense
or dominant negative expression plasmids listed. The cyclin D1 antisense (pBP-
STR-1CD1AS) (A) and the dominant negative mutants for N17Ras, N17Rac,
N19Rho, MEKC, and E2F-1 (E2F-1 E132) (2.5 or 5 mg) (B) were assessed in
comparison to the empty expression vector cassette. The effect on transformation
is shown for 1:1 and 1:2 molar ratios of NeuT vector to dominant negative or
antisense plasmid. Panel A shows a representative assay with the effect of cyclin
D1 antisense. The transformation induced by NeuT is shown as 100% in black
bars throughout. The results are shown as percentage of transformation by NeuT
for independent transformation assays compared with the effect of empty vector
cassette (mean 6 standard error of the mean).
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of focus formation (53). Thus, our experiments used relatively
small amounts of dominant negative or antisense expression
plasmid in conjunction with the NeuT expression plasmid.

We have previously used the full-length human cyclin D1
antisense under control of a tetracycline-regulated promoter to
effectively reduce cyclin D1 protein levels in rat H19-7 cells
(79). These experiments were conducted with the cyclin D1
antisense in Rat-1 cells in the tetracycline-regulated plasmid
pBPSTR-1. The transformation experiments were conducted
on eight separate occasions. In every experiment, the cyclin D1
antisense construct inhibited the number of foci induced by
NeuT (Fig. 8A). Overexpression of the cyclin D1 antisense
construct reduced NeuT-induced colony formation by a mean
of 50% (Fig. 7A), and this effect was dose dependent.

Overexpression of the dominant negative N17Ras reduced
NeuT-induced colony formation by 70% (Fig. 7B) in a dose-
dependent manner. Rac (52) and Rho (53) were previously
shown to convey an important component of V12Ras induced
colony formation in Rat-1 cells. Therefore, we examined
whether Rac and Rho pathways were involved in NeuT-in-
duced transformation or whether these transforming pathways
diverged. Dominant negative N17Rac reduced NeuT-induced
Rat-1 focus formation by 50%, and N19Rho reduced colony
formation by 67%. These results were seen whether the dom-
inant negative mutants were expressed from pBPSTR-1 (Fig.
7B) or from the pEXV3 vector (not shown). In each of the
seven separate experiments for each expression plasmid, inhi-
bition of focus formation was observed. None of the dominant
negative expression plasmids reduced activity of the promoter
driving the NeuT expression plasmid (not shown), suggesting
that the effect of each dominant negative was not mediated
through an indirect effect inhibiting NeuT expression.

In previous studies, an interfering mutant of MAPK kinase
1 (MEKAla-218/Ala-222, MEKC) was shown to inhibit MAPK
kinase activity (17). Rho is thought to preferentially regulate
the MAPK pathway, and Rac is thought to preferentially reg-
ulate Jun kinase activity (67). To determine whether NeuT-
induced transformation involved the MAPK pathway, the ef-
fect of MEKC was assessed. MEKC inhibited NeuT-induced
transformation by 44% (Fig. 7B). The MEK inhibitor
PD098059 also reduced NeuT-induced focus formation by
30% (mean of three determinations [not shown]).

Our studies above had found that a dominant negative mu-
tant of E2F-1 was capable of inhibiting NeuT-induced cyclin
D1 promoter activity, implicating E2F-1 as a downstream tar-
get of NeuT signaling. To examine the role of E2F-1 in NeuT-
induced transformation, we coexpressed the E2F-1 E132 mu-
tant with NeuT in Rat-1 cells. Compared with the empty
expression vector, which had no effect on transformation, the
E2F-1 E132 plasmid inhibited NeuT-induced transformation
by 40% (Fig. 7B). Together, these results are consistent with a
model in which NeuT-induced transformation involves Ras,
Rac, Rho, MEK1, E2F-1, and cyclin D1 for full transforma-
tion.

Cyclin D1 antisense blocks tumorigenesis of NeuT-trans-
formed mammary cells in immunodeficient strains of mice. As
cyclin D1 antisense blocked NeuT-induced transformation in
fibroblasts, we assessed its effect on growth of a mammary
tumor cell line (NAFA) derived from an MMTV-neuT mouse
(41). NAFA cells grow rapidly and have readily detectable
levels of cyclin D1 by Western blot (not shown). NAFA cells
were cotransfected with a truncated human CD4-encoding
plasmid and either cyclin D1 antisense or empty vector (pBP-
STR-1). Transfected cells were selected by magnetic bead-
activated cell sorting (39, 60) and injected subcutaneously into
the flanks of the same nude mouse (Fig. 8A and B), and tumor

formation was assessed. Importantly, no tumors were observed
at the sites of injection of the cyclin D1 antisense-transfected
cells after 3 to 5 weeks. In contrast, the control vector-trans-
fected NAFA cells injected into the contralateral flank devel-

FIG. 8. Cyclin D1 antisense inhibits growth of NeuT-transformed mammary
epithelial cells in nude mice. Immunodeficient mice received subcutaneous in-
jections into each flank with transfected NAFA cells in PBS. Sites injected with
NAFA cells transfected with control vector (right flank, yellow arrow) showed
development of tumors, whereas in the same animal, the left flank (red arrow),
injected with NAFA cells transfected with cyclin D1 antisense, did not show the
development of tumors. (A and B) Two examples of mice injected in both flanks;
(C) hematoxylin and eosin staining of the right flank tumor of the mouse in panel
A, demonstrating adenocarcinoma; (D) Western blot of implanted cells of the
mouse in panel A, demonstrating reduced cyclin D1 protein levels in cells
transfected with the cyclin D1 antisense (CD1 AS) compared with the control
vector (control). GDI blotting confirmed equivalent protein loading, and kera-
tin-8 blotting confirmed that the tissues were of epithelial origin.
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oped histologically confirmed adenocarcinomas consisting of
solid cords and nodules of neoplastic cells in each case (Fig.
8C). Tissues from the sites of implantation were assessed for
cyclin D1 levels by Western blotting (Fig. 8D). Cyclin D1 levels
were lower in cells transfected with the cyclin D1 antisense
construct than in cells transfected with the control vector.
Equivalent protein loading was confirmed by blotting for GDI,
and the tissues were confirmed to be of epithelial origin by
keratin-8 blotting. After correction for equivalent protein load-
ing using GDI, cyclin D1 levels were determined to be reduced
90% in cells transfected with the cyclin D1 antisense. Four
different mice were injected on different days, as independent
experiments, with similar results. These results establish that
downregulation of cyclin D1 is sufficient to abolish tumorige-
nicity in Neu-transformed cells.

DISCUSSION

Oncogenic activation of neu can occur through overexpres-
sion, point mutation, or deletion of the extracellular domain
(7, 61). Similar to the murine MMTV-neu model of mammary
tumorigenesis, in primary human breast cancers, the overex-
pression of ErbB-2 (64) and the recent identification of an
in-frame deletion of a portion of the extracellular domain of
ErbB-2 (62) suggest an important role for ErbB-2 in induction
and progression of human breast tumors. The present studies
identify for the first time the role of a rate-limiting component
of the cell cycle in transformation by Neu in mammary adeno-
carcinoma cells in vivo. Cyclin D1 abundance and kinase ac-
tivity were increased in mammary gland tumors from MMTV-
neu and MMTV-NDL transgenic animals. The activating ECD
mutations of Neu induced cyclin D1 promoter activity in
MCF7 cells in a manner that corresponded well with their
transforming capacity in Rat-1 cells (61). Cyclin D1 antisense
inhibited neuT-induced transformation in a dose-dependent
manner and abolished the growth of NeuT-transformed mam-
mary cells in immunodeficient mice. These results suggest a
critical role for cyclin D1 in proliferative and transforming
signals downstream of oncogenic Neu.

In these studies, Ras, Rac, and Rho contributed to NeuT
induction of cyclin D1 promoter activity and cellular transfor-
mation. Each of these small monomeric GTPases has been
implicated in promoting cell cycle progression, and activating
mutants of Ras and Rac1 have been shown to induce cyclin D1
(1, 76). The MEK inhibitor PD098059, the p38 inhibitor
SB203850, and the JNK pathway inhibitor JIP-1 reduced in-
duction of cyclin D1 by NeuT. These findings are consistent
with our previous studies in which ERK directly induced cyclin
D1, EGF induction of the cyclin D1 promoter involved a Ras/
ERK pathway (1, 71), and the ERK, p38, and JNK pathways
were involved in induction of the cyclin D1 promoter in MCF7
cells downstream of another oncogenic tyrosine kinase,
pp60v-src (33).

These studies identify for the first time specific transcrip-
tional targets activated by NeuT within the cyclin D1 promoter,
indicating an important role for E2F-1 in both NeuT-induced
transformation and cyclin D1 promoter activation. E2F-1 can
function as both an oncogene and a tumor suppressor likely
dependent on cellular context, although the molecular mech-
anisms governing these events is poorly understood (73). NeuT
induced the cyclin D1 E2F site when linked to an heterologous
promoter in MCF7 cells, whereas in previous studies per-
formed in trophoblastic cells and mouse embryo fibroblasts
(70), E2F-1 inhibited cyclin D1 abundance and promoter ac-
tivity. Thus, E2F-1 conveys cell-type-specific effects on the cy-
clin D1 promoter likely related to additional E2F/DP family

members or cofactors present within a given cell type. Recent
studies have indicated that in vitro, distinct E2F sites have
preferential affinities for members of the E2F family (66). The
cyclin D1 E2F sequence resembles most closely the consensus
sequence that was found to preferentially bind pRB–E2F-1–
DP-1 complexes (66). Indeed, E2F-1 bound the cyclin D1 se-
quence with greater affinity than E2F-4 in these studies, and
pRB is a component of complexes that can bind the cyclin D1
E2F site (reference 70 and data not shown). In MCF7 cells,
CHIP assays demonstrated binding of E2F-1 specifically to the
cyclin D1 promoter in the context of native chromatin. Further
characterization of the additional proteins binding to the cyclin
D1 promoter E2F site may provide greater insight into the
mechanisms of neu-mediated transformation and is the focus
of ongoing studies.

The E2F-1 transactivation domain linked to the GAL4 DNA
binding domain was sufficient for induction by NeuT. Cyclin
D1 overexpression leads to the induction of pRB phosphory-
lation and the release of free E2F-1 (74), which is capable of
inducing promoter activity through either Sp1 or E2F sites
(30). Consistent with a role for E2F-1 in NeuT induction of
cyclin D1, the DNA-binding-defective and activation-defective
mutants of E2F-1 and the dominant negative mutant of DP-1
inhibited NeuT induction of cyclin D1, and E2F-1 E132 inhib-
ited NeuT-induced transformation. Because cyclin D1 overex-
pression can induce promoter activity through E2F sequences
(82) and overexpression of pRB inhibits E2F-1 transactivation
function (22), NeuT may sustain cyclin D1-mediated autoin-
duction through the E2F and Sp1 sites.

The Sp1 binding site of the cyclin D1 promoter was required
for optimal induction by NeuT, and NeuT induced the Sp1
transactivation domain in MCF7 cells. Sequences resembling
Sp1 binding sites contribute to the inducible expression of
several growth factor-inducible genes (14, 44, 58). Sp1 binds to
the promoters of Neu differentiation factor-inducible genes,
including the acetylcholine receptor d and ε subunits and neu-
rotrophin-3 (4). Sp1 binds several intermediary proteins, some
of which have been implicated in mitogenic signaling, including
the E2F-1 and E2F-3 proteins (30). The Sp1 binding site of the
a2-integrin gene is a site of inhibition by ErbB-2, suggesting
that the inhibition of a2-integrin abundance may contribute to
loosening of cell-cell contacts necessary for cell division (81).
Together with the activation of cyclin D1, the induction of
other growth factor-regulated genes through Sp1 binding sites
and the inhibition of genes involved in cell contact may con-
tribute to the proliferative and transforming phenotype in-
duced by activated Neu.

As a common downstream target of several different mito-
genic signaling pathways in breast cancer cells (36), cyclin D1
represents a logical target for inactivation by gene therapy. In
addition to contributing to phosphorylation and inactivation of
pRB, cyclin D1 binds other proteins, including proliferating
cell nuclear antigen (34), a Myb-related protein (26), and the
estrogen receptor (ER) (45). Neu is capable of phosphorylat-
ing the ER on tyrosine residues (48), and phosphorylation of
the ER at tyrosine and/or serine residues has been associated
with functional activation. The role of cyclin D1-associated
proteins in neu-induced transformation remains to be deter-
mined. Cyclin D1 antisense constructs as well as the recently
characterized dominant negative mutants of cyclin D1 (19)
may provide important information about the requirement for
cyclin D1 in neu-induced mammary gland tumor formation in
vivo. Clearly, mammary tumorigenesis is a multistep process
and may involve alterations in the expression of other tumor
suppressor gene products. The abundance of the p16INK4a pro-
tein is frequently reduced in the MMTV-neu tumors, and over-
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expression of p16INK4a but not p19ARF can inhibit NeuT-in-
duced focus formation in Rat-1 cells, suggesting that specific
tumor suppressors may inhibit Neu-induced transforming
pathways (M. D’Amico and R. G. Pestell, unpublished data).
The roles of these additional tumor suppressor genes in Neu-
induced transformation in mammary epithelial cells are the
basis of ongoing studies.
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