Pleiohomeotic Can Link Polycomb to DNA and Mediate Transcriptional Repression

Adone Mohd-Sarip, Francesca Venturini, Gillian E. Chalkley, and C. Peter Verrijzer*

Department of Molecular and Cell Biology, Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands

Received 24 June 2002/Accepted 8 August 2002

Polycomb group (PcG) proteins function through cis-acting DNA elements called PcG response elements (PREs) to stably silence developmental regulators, including the homeotic genes. However, the mechanism by which they are targeted to PREs remains largely unclear. Pleiohomeotic (PHO) is a sequence-specific DNA-binding PcG protein and therefore may function to tether other PcG proteins to the DNA. Here, we show that PHO can directly bind to a Polycomb (PC)-containing complex as well as the Brahma (BRM) chromatin-remodeling complex. PHO contacts the BRM complex through its zinc finger DNA-binding domain and a short N-terminal region. A distinct domain of PHO containing a conserved motif contacts the PcG proteins PC and Polyhomeotic (PH). With mobility shift assays and DNA pulldown experiments, we demonstrated that PHO is able to link PC, which lacks sequence-specific DNA-binding activity, to the DNA. Importantly, we found that the PC-binding domain of PHO can mediate transcriptional repression in transfected Drosophila Schneider cells. Concomitant overexpression of PC resulted in stronger PHO-directed repression that was dependent on its PC-binding domain. Together, these results suggest that PHO can contribute to PRE-mediated silencing by direct recruitment of a PC complex to repress transcription.

Cellular differentiation and development of multicellular organisms is the result of the temporal and spatial orchestration of gene expression patterns. The Polycomb group (PcG) of repressors and trithorax group (trxG) of activators are required for maintenance of the determined gene expression patterns of several genes, including the homeotic genes (4, 5, 9, 22, 44, 47, 49, 61). Early in Drosophila development, the transiently expressed gap and pair-rule proteins establish the expression patterns of the homeotic genes that determine the identity of the body parts. These early regulators disappear later during development, and their function is taken over by the PcG and trxG proteins. The PcG proteins act to perpetuate the silencing of the homeotic genes outside their expression domains, whereas the trxG proteins are necessary for the maintenance of transcriptional activity. Since PcG and trxG proteins conserve a state of gene expression over multiple rounds of cell division, this process is often referred to as epigenetic regulation.

PcG proteins act in concert as components of defined multiprotein complexes that are believed to silence gene transcription by inducing a higher-order chromatin structure (1, 9, 22, 24, 46, 49, 64, 66, 67, 68). Currently, two functionally distinct classes of PcG protein complexes have been identified. First, biochemical analysis uncovered a 3-MDa PRC1 complex that harbors PcG proteins Polycomb (PC), Polyhomeotic (PH), Sex combs on midleg, Posterior sex combs (PSC), and several other proteins, including components of the basal transcription factor TFIID and Zeste, a sequence-specific DNA-binding protein (22, 67, 68). Coimmunoprecipitation experiments and protein-protein interaction studies suggested that the mammalian homologues of the PcG proteins in PRC1 also form a complex (1, 66).

A second type of PcG complex contains the PcG proteins Enhancer of Zeste [E(z)], extra sex combs (Esc), the histone deacetylase Rpd3, and the histone-binding protein p55 that is also part of the chromatin assembly factor CAF1 and the chromatin remodeling factor NURF (56, 75). The association of E(z) and ESC is conserved in mammals, and repression by the mammalian ESC/E(z) complex involves histone deacetylation (66, 79). In contrast, repression by vertebrate PC homologues is resistant to inhibitors of histone deacetylation, suggesting that PC repression occurs through a distinct molecular mechanism (72, 79). Instead, PRC1 may act by inhibition of chromatin remodeling by the SWI/SNF complex in a process that does not require the histone tails (23, 68). Thus, there are at least two distinct PcG complexes, each of which represses transcription by a different mechanism. The ESC/E(z) complex appears to direct deacetylation of the histone tails, whereas PRC1 may induce a stabilized SWI/SNF-resistant chromatin structure. Recent coimmunoprecipitation experiments have indicated that there might be a transient interaction between these two distinct PcG complexes during early development (64).

An outstanding question is how PcG proteins act in a gene-specific manner. In Drosophila melanogaster, PcG-dependent silencing is mediated by large, rather poorly defined DNA sequences that are named Polycomb response elements (PREs) or cellular memory modules (5, 22, 47, 49, 61). PREs were identified by their PcG protein-dependent silencing effect on linked reporter genes in transgenic flies (12, 15, 21, 28, 41, 54, 62, 71, 82). Indeed, chromatin immunoprecipitation exper-
iments revealed that PREs are bound by PcG proteins (57, 73, 74), and immunostaining of polytene chromosomes showed that the insertion of a P-element containing a PRE creates a new PcG protein-binding site (15, 16, 82). Collectively, these results demonstrate that PcG proteins associate with PREs to mediate transcriptional silencing.

The majority of PcG proteins appear to lack sequence-specific DNA-binding activity, suggesting that protein-protein interactions play an important role in PcG complex formation on PREs. The exception so far is the PcG protein Pleiohomeotic (PHO), which contains a zinc finger DNA-binding domain (DBD), which is related to that of the mammalian transcription factor YY1 (9). There is a second region of about 25 residues that shows similarity, corresponding to a small portion of the so-called spacer region in YY1 (69).

The ability of PHO to bind DNA makes it an attractive candidate for a PcG tethering factor. Indeed, PHO has been shown to bind to PREs from the engrailed (en) gene (9), the Ultrabithorax (Ubx) gene (24), and the Abdominal-B (Abd-B) region (13, 52). Sequence inspection has revealed that most PREs contain potential PHO binding sites, suggesting that PHO might be involved in the targeting of PcG silencing (51). The PHO binding sites in the en PRE are essential for its function as a pairing-sensitive silencer of a minifierter reporter gene, and silencing is partially impaired in pho mutants (10). Point mutations in PHO sites in the Ubx PRE abolish PcG silencing in imaginal disks, and PHO was also shown to synergize with PC to repress the gene in vivo (25, 76). Likewise, both the PHO and GAGA sites in the MCP silencer and iab-7 are required for the maintenance of repression (12, 51). However, although PHO sites are necessary in these studies, by themselves they are not sufficient to reconstitute PRE activity in vivo. Instead, the activity of additional DNA-binding proteins, such as the trxG protein GAGA, appears to be required for PcG silencing (13, 30, 35, 52, 63, 70).

Recent studies have indicated that PHO might associate with the ESC/E(z) complex (64). Moreover, the related YY1 protein has been reported to interact with the mammalian ESC/E(z) complex (65). However, these results do not exclude the possibility of a transient interaction with components of a PC-containing PRCI-related complex. Indeed, YY1 has been found to bind RYBP, a component of the vertebrate PC complex (26). Furthermore, as discussed above, PHO and PC appear to cooperate in vivo during fly development. A simple explanation for this cooperation would be a direct interaction between PHO and a PC-containing repressive complex.

Because transcription factors in general are not stably associated with their coactivators or corepressors (55), we set out to identify a putative repression domain in PHO and test whether it interacted with a PC complex. We found that PHO can directly bind a PC complex as well as the Brahma (BRM) chromatin remodeling complex in Drosophila embryo nuclear extracts. Distinct protein domains of PHO are involved in targeting either the PC or the BRM complex. PHO specifically targets PC and PH. We used mobility shift assays and DNA pulldown experiments to assess the ability of PHO to link PC to the DNA. Finally, we tested the ability of PHO to direct PC-mediated transcriptional repression in transfected Drosophila Schneider cells. Our results suggest that PHO contributes to PcG repression by connecting PC to gene-regulatory DNA elements.

MATERIALS AND METHODS

DNA constructs. Details of cloning procedures are available upon request. The glutathione S-transferase (GST) fusion constructs were generated by a PCR-based strategy. Ph-, Ph-, and PHO-encoding DNA fragments were cloned in pGEX-2TK (Pharmacia). The GST-BRM fusion constructs used have been described (38). Similarly, templates for in vitro translation were generated by cloning of the corresponding coding sequences into pT7STOP (40). The coding sequence of full-length PHO was cloned into modified versions of the shuttle vector pVL1392 (Pharmpigen) expressing either an in-frame amino-terminal Flag or GST tag, and the PHO DNA-binding domain (DBD; amino acids 355 to 520) was cloned into pVL1392-Flag. The luciferase reporter contains five Gal4 binding sites located upstream of the herpes simplex virus thymidine kinase promoter in front of luciferase (pGL3, Promega). The Gal4 DNA-binding domain chimeras were constructed by subcloning the indicated cDNAs in-frame in a modified pCDNA3. The full-length coding sequence of PC was cloned in pSuper-CATCH containing an N-terminal Flag tag. The reporter used for the long-distance repression experiment (Fig. 7C) has been described (48).

Protein procedures. Recombinant PHO and DBD containing an N-terminal Flag tag was expressed in Sf9 cells in the baculovirus insect system and immunopurified with anti-Flag M2 beads (Sigma) or glutathione-Sepharose (Pharmacia) essentially as described previously (14, 40). The Drosophila nuclear extracts and protein fractions were prepared essentially as described previously (3, 33). Briefly, all protein procedures were carried out at 4°C or on ice with HEMG buffer [25 mM HEPES-KOH (pH 7.6), 0.1 mM EDTA, 12.5 mM MgCl2, 10% glycerol, 1 mM dithiothreitol (DTT), 0.2 mM 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, 1 μM peptstatin, 0.01% Nonidet P-40] containing various amounts of KCl. Nuclear extracts of dechorionated Drosophila embryos (0 to 12 h) were prepared as described previously by Kadonaga (38). The nuclear extracts were either used directly or concentrated by Poros-Heparin (Perseptive Biosystems) chromatography essentially as described previously (3, 33). The heparin–400 mM KCl fractions (His4) contained the vast majority of BRM, initiation switch (ISWI), and general transcription factors. The HO.4 pool was further purified by Sephacryl S-300 column chromatography guided by Western blot analysis with antibodies directed against BRM, PC, and PH. Fractions containing the bulk of the above factors were pooled and further purified on a BioScale Q10 column (Bio-Rad). It should be noted that essentially all the PC, PH, and BRM present in nuclear extracts was retained in this fraction, as judged by Western blotting with the appropriate antibodies (data not shown). Most pulldown experiments were performed with crude nuclear extracts as well as with a fraction from the Q10 column with essentially similar results. The results shown were obtained with the nuclear extracts (Fig. 1) or with the partially purified Q10 fraction (Fig. 2, 3, and 6).

Recombinant GST fusion proteins were expressed in Escherichia coli BL21 and purified by glutathione-Sepharose chromatography by standard procedures. 35S-labeled proteins were expressed with the TNT rabbit reticulocyte lysate (Promega). The GST pulldown experiments were performed as described previously (36) with the following modifications. The lysate buffer contained 25 mM HEPES-KOH (pH 7.6), 10% glycerol, 0.5 mM NaCl, 0.01% NP-40, 5 mM DTT, 2.5 mM MgCl2, 50 μM ZnCl2, and protease inhibitors. Binding reactions (Fig. 2 and 4) were carried out in binding buffer [20 mM HEPES-KOH (pH 7.6), 2.5 mM MgCl2, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride, 1 mM DTT] containing 70 mM KCl and 0.02% NP-40. Unbound proteins were removed with a series of washes with wash buffer [10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.2% NP-40, 100 mM NaCl]. Bound proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected by Western blotting.

For pulldowns with GST fused to full-length PHO, GST-PHO was purified from baculovirus-infected Sf9 cells. Binding assays (Fig. 1B) were performed as described above with the following modifications: binding was performed in HEMG containing 100 mM NaCl, and washes were performed with HEMG containing 150 mM NaCl. Far-Western analysis was carried out as described previously (39) with 35S-labeled reticulocyte-expressed protein derivatives. Following autoradiography to detect bound proteins, blots were reprobed with antibodies against BRM, PH, and PC. All immunological procedures were performed essentially as described previously (31, 32). Rabbit antiserum directed against PHO (SN842), PH (SN964), PC (SN965), Groucho (GRO) (PV1 and PV2, pooled), and Moira (MOR) (SN670 and SN671, pooled) were raised by immunization with GST fusion proteins corresponding to PHO amino acids 1 to 49, 42 to 119, and 118 to 172; PH amino acids 1 to 395, 557 to 855, 817 to 1096.
and 1077 to 1590; PC amino acids 1 to 215, 196 to 390, and 1 to 390, PV1 and -2, full-length GRO, SN670 and SN671, and full-length MOR. Additional buffers (used in Fig. 2 and 3) were generated by immunization of rabbits with peptides coupled to keyhole limpet hemocyanin essentially as described previously (31, 32). The following peptides were used: PV69 anti-PC, RERDMKDSSPVVA; PV66 anti-PH, KEVPPGGEAKDPGA; and PV35 anti-polynucleosome II 140-kDa subunit (DmRPl40), MSVQIVEDSPAIELQ. The antibodies directed against BRM and ISWI (40), OSA (77) and PSC (50) have been described before. Antibodies were affinity purified as described by Hancock and Evan (31). When appropriate, all critical immunoprecipitations and Western immunoblot experiments were repeated with different antisera. For communoprecipitation experiments (Fig. 1A), 300 μl of Drosophila embryo nuclear extract was incubated overnight at 4°C on a spinning wheel with 30 μl of antiserum directed against PHO. Next, 50 μl of protein A-Sepharose beads (Pharmacia) was added and incubated for another hour, and following a series of extensive washes with HEMG buffer containing 250 mM NaCl, bound proteins were eluted with HEMG–I M NaCl, resolved by SDS-PAGE, and analyzed by Western immunoblotting.

DNA-binding assays. The DNA band shift assays were essentially performed as described previously (14). Double-stranded oligonucleotides harboring a PHO site (5′-AATTCCGGCGCAGCCATTATGTCG-3′) (51) were end labeled with T4 polynucleotide kinase. Binding reactions were carried out in a reaction volume of 20 μl of 0.5× HEMG buffer containing 70 mM NaCl, 50 μg of bovine serum albumin per ml, 0.05% NP-40, 1 mM DTT, ~60 fmol of double-stranded labeled probe, 1 μg of poly(dGdC)-poly(dGdC), and the indicated polypeptide. All binding reactions were carried out on ice for 90 min and were analyzed on 5% polyacrylamide gels run in 0.5× Tris-glycine–0.1% NP-40 buffer at room temperature. For supershift experiments, recombinant GST-PC or GST alone was added to the binding reaction. In the antibody supershift experiments, either affinity-purified anti-PC antiserum or preimmune antiserum was added to the reaction directly before the addition of the labeled probe. For recruitment assays, PC or BRM complexes were immunopurified from Mono Q fraction 26 with affinity-purified antibodies directed against each of these proteins that were cross-linked to protein A beads with dimethylpimelimidyl carbonate as described previously (32). Affinity resins were incubated with protein fractions for 2 h at 4°C in HEMG containing 75 mM KCl, followed by extensive washes with excess HEMG containing 150 mM KCl. Next, these beads were incubated either in the presence or absence of recombinant PHO or PHO DBD, and radiolabeled double-stranded oligonucleotides harboring live PHO sites present in natural PREs (5′-CTAGACGGCGACGACATATTGCTGGTGC GGCATGATGTTAAAGCCAGCCATTTCTTGGTCAGCGCCATAT TATTTTGCCGCACTCATGGATGATG-3′) (51) as well as an unrelated con-

and PSC present in Drosophila embryo extracts. We also investigated whether PHO could bind the multisubunit chromatin-remodeling BRM complex, containing at least three subunits encoded by trxG genes: BRM itself, Osa (OSA), and Moira (MOR) (17, 18, 40). First, we used either preimmune serum or antiserum directed against PHO for immunoprecipitation experiments with Drosophila embryo nuclear extracts (Fig. 1A). Following extensive washes with a buffer containing 250 mM NaCl and detergent, PHO-associated proteins were eluted with a buffer containing 1 M NaCl, resolved by SDS-PAGE, and analyzed by Western immunoblotting. Lane 1 represents 10% of the input material used in the binding reactions. (B) The ability of a GST-tagged full-length PHO to recruit PcG proteins or the BRM complex within an embryo nuclear extract was tested by GST pulldown assays. GST alone (lane 2) or GST-PHO was immobilized on glutathione-Sepharose beads and incubated with Drosophila embryo nuclear extracts. Following a series of extensive washes with a buffer containing 150 mM NaCl, bound proteins were resolved by SDS-PAGE and analyzed by Western immunoblotting. Lane 1 represents 10% of the input material used in the binding reactions.

RESULTS

PHO binds the BRM complex and a PC complex. To assess whether PHO might be involved in the recruitment of other PcG proteins, we tested its ability to bind endogenous PC, PH,
whether full-length recombinant PHO was able to bind either of these complexes present in embryo nuclear extracts. For these experiments, we purified GST-tagged PHO from extracts of insect Sf9 cells infected with recombinant baculoviruses. An affinity resin was generated by immobilization of GST-PHO on glutathione-Sepharose beads and incubated with Drosophila nuclear embryo extracts. Following a series of extensive washes, bound proteins were resolved by SDS-PAGE and analyzed by Western immunoblotting (Fig. 1B). In agreement with the immunoprecipitation experiments, recombinant PHO was found to efficiently bind the BRM complex as well as a PC complex. Neither GRO nor RNA polymerase II was bound by PHO, and none of the PHO-binding proteins were retained on GST beads.

To map the PHO domains involved in binding the BRM or PC complex, we expressed and purified distinct PHO deletions as GST fusion proteins and immobilized these polypeptides on glutathione-Sepharose beads. The various PHO affinity resins were incubated with a partially purified fly embryo nuclear extract (see Materials and Methods). PHO-associated proteins were resolved by SDS-PAGE and analyzed by Western immunoblotting (Fig. 1B). The presence of PHO was established by reprobing the far-Western blots with antibodies directed against these proteins (Fig. 3C, lanes 5 to 6). In addition, we observed binding to a protein of around 110 kDa. None of the other proteins present in the protein fraction used in the binding reactions were selective. PHO(1-172) (Fig. 3C, lane 2), which contains the putative PHO-binding domain and the N-terminal BRM complex-binding region, efficiently bound to both BRM and PC, while weak binding to PH was observed. Although PHO(167-363)

The presence and position of BRM, PH, and PC were established by reprobing the far-Western blots with antibodies directed against these proteins (Fig. 3C, lanes 5 to 6). In addition, we observed binding to a protein of around 110 kDa. None of the other proteins present in the protein fraction used (see Fig. 3A) were significantly bound by PHO, indicating that the interactions detected in the far-Western analysis were selective. PHO(1-172) (Fig. 3C, lane 2), which contains the putative PC-binding domain and the N-terminal BRM complex-binding region, efficiently bound to both BRM and PC, while weak binding to PH was observed. Although PHO(167-363)
was efficiently expressed and labeled, it failed to recognize any protein present on the membrane (Fig. 3C, lane 3). The far-Western analysis suggested that the PHO DBD can bind directly to BRM (lane 4) but not to PC or PH. Thus, in agreement with the pulldown assays with embryo extracts (Fig. 1), these experiments suggest that separate PHO domains mediate association with the BRM and PC complexes.

The far-Western analysis indicates that BRM, PC, and PH are the most likely targets contacted by PHO. To obtain direct evidence for binding to PHO, we expressed and purified various polypeptides corresponding to PC, PH, and BRM as GST fusion proteins. These fusion proteins were immobilized on glutathione-Sepharose beads and tested for their ability to bind radiolabeled full-length PHO. As shown in Fig. 4A, PHO bound efficiently to the N-terminal half of PC but not to its C-terminal half. Moreover, PHO associated with a central portion (amino acids 230 to 736) of BRM and the N-terminal and C-terminal domains of PH but not with the central regions of PH or with GST alone. Thus, these experiments with recom-
binant polypeptides provide further evidence for the notion that PHO interacts specifically with BRM, PC, and PH.

Since our experiments with embryo extracts (Fig. 2) suggested that PHO residues 118 to 172 could recruit an endogenous PC complex, we tested whether this domain could directly recognize recombinant PC or PH in a pulldown assay (Fig. 4B). Indeed, the polypeptide PHO(118-172) efficiently retained full-length PC or its N-terminal half but not its C-terminal half. Moreover, this region of PHO bound the N-terminal portion of PH(1-595) but not to the remainder of the protein. We conclude that PHO(118-172) constitutes a PC-binding domain that associates with both PC and PH.

PHO can link PC to the DNA. Since PHO but not PC possesses sequence-specific DNA-binding ability, we wondered whether PHO could tether PC to a PHO recognition DNA sequence. Full-length PHO and the C-terminal portion harboring the DBD were expressed in Spodoptera frugiperda (Sf9) insect cells infected with recombinant baculoviruses. PHO polypeptides were immunopurified from Sf9 cell extracts to near homogeneity with their N-terminal Flag epitopes (Fig. 5A). PC was expressed as a GST fusion protein and purified from *E. coli* extracts (Fig. 5, lane 4). Next, we performed electrophoretic mobility shift assays with the PHO polypeptides either alone or in the presence of GST-PC (Fig. 5B, lane 5). Recombinant GST and GST-PC were expressed in Sf9 insect cells infected with recombinant baculoviruses. PHO polypeptides were immunopurified from Sf9 cell extracts to near homogeneity with their N-terminal Flag epitopes (Fig. 5A). PC was expressed as a GST fusion protein and purified from *E. coli* extracts (Fig. 5, lane 4). Next, we performed electrophoretic mobility shift assays with the PHO polypeptides either alone or in the presence of GST-PC (Fig. 5B). As expected, full-length PHO (Fig. 5B, lane 2) as well as the DBD (Fig. 5B, lane 7) could bind efficiently a DNA fragment bearing a PHO-binding site. Addition of GST-PC to the binding reaction containing PHO led to the appearance of a novel slower-migrating species, which we interpret as a PC-PHO-DNA complex. Indeed, GST-PC by itself failed to bind DNA (Fig. 5B, lane 3), and GST alone did not induce a PHO supershift (lane 6). Thus, the appearance of the supershifted species depends on the presence of both PHO and PC. Moreover, PHO DBD, which lacks the PC-binding domain, was not supershifted by GST-PC (Fig. 5B, lane 8).

Following incubation with affinity-purified antibodies directed against PC, the PC-PHO-DNA complex but not the PHO-DNA complex disappeared (Fig. 5C, lane 5). The appearance of label just below the well may indicate the presence of an antibody-PC-PHO-DNA complex that has difficulty entering the gel. As expected, formation of the ternary PC-PHO-DNA complex was not blocked by the addition of preimmune serum (Fig. 5C, lane 6).

To test whether PHO could link an endogenous PC complex to the DNA, we used beads coated with affinity-purified antibodies directed against either PC or BRM to purify the complexes from embryo nuclear extracts. Next, we assessed the ability of the immobilized PC and BRM complexes to associate with specific DNA sequences in either the presence or absence of PHO. The affinity resin was incubated with a radiolabeled DNA fragment containing five PC-binding sites and an unrelated control fragment in the presence of an excess of poly(dG-dC)-poly(dG-dC) competitor DNA. After a series of washes, bound DNA was recovered and analyzed by agarose gel electrophoresis, followed by autoradiography (Fig. 6).

Although the PC complex alone was unable to bind DNA (Fig. 6, lane 5, upper and lower panels), selective association with the PHO sites but not with the control DNA was observed in the presence of PHO (Fig. 6, upper panel, lane 6). An unrelated transcription factor (NPF-1) was unable to link the PC complex to the DNA (Fig. 6, lane 7). Furthermore, PHO was able to tether the BRM complex to the PHO elements but not to the control DNA (Fig. 6, upper panel, lane 13). The
PHO DBD, lacking the PC-binding domain, failed to connect the PC complex to the DNA, whereas it still efficiently recruited the BRM complex (Fig. 6, compare lanes 6 and 13, bottom panel). We conclude that PHO can act as a tethering factor that uses distinct domains to link the BRM complex as well as the PC complex to a regulatory DNA element.

PC binding domain of PHO mediates transcriptional repression. So far, our results have shown that PHO is able to recruit a PC complex to the DNA. Next, we wished to investigate the functional consequences of the PHO-PC interaction in Drosophila cells. Previously, it was demonstrated that PcG proteins tethered to the DNA by fusion to the Gal4 DBD act as transcriptional repressors in transiently transfected cells (11). We took a similar approach and replaced the PHO DBD with that of Gal4 and tested the effect of the fusion protein on transcription. For these experiments, we used a reporter containing Gal4 binding sites flanked by GAGA sites separated by over 2 kb of intervening DNA from a promoter containing GAGA sites (48). This reporter was cotransfected in the absence or presence of various combinations of expression vectors for the Gal4 DBD, Gal4-PHO, or PC (Fig. 7C). In this setting, Gal4-PHO was again able to mediate transcriptional repression, which was dependent on the presence of the PC-binding domain. Moreover, concomitant expression of PC led to stronger repression. From these results, we conclude that the ability of PHO polypeptides to bind PC in vitro correlates well with their capacity to mediate PC repression in Drosophila cells.

DISCUSSION

PcG-mediated gene silencing is accomplished via the cis-acting PREs, which are the DNA targets for the PcG proteins. However, it is not yet understood how PC and other PcG proteins that lack any apparent sequence-specific DNA-binding ability are directed towards PREs. In this study, we show that PHO can link PC and the BRM chromatin-remodeling complex to the DNA. A small domain in PHO mediates the recruitment of the PC complex by binding to PC and PH. This PC-binding domain directs transcriptional repression in transfected cells, which is enhanced by concomitant overexpression of PC. These results support the notion that PHO contributes to PRE-mediated silencing by tethering a PC complex to repress transcription.

Consistent with a direct role for PHO in PcG silencing, the phenotypes of pho mutants show similarity to those of mutants with changes in other PcG genes (6, 27, 29). Due to a large maternal contribution, animals homozygous for pho null alleles survive up to the pupal stage but display homeotic transformations. In the absence of maternal pho mRNA, embryos die early during development and exhibit segmentation defects as well as severe homeotic transformations. Previous in vivo studies have shown that mutations in PHO DNA-binding sites or in
FIG. 7. PHO represses transcription in transiently transfected Drosophila Schneider L2 cells. (A) The PC-binding domain of PHO mediates transcriptional repression. Schneider L2 cells were transfected with either 75 ng of reporter plasmid alone (no Gal4) or together with increasing amounts of the plasmid expressing the Gal4 DNA-binding domain (Gal4 DBD) alone or with various Gal4-PHO fusion constructs (50 ng and 150 ng), as indicated by the schematic representation on the left. The structure of the reporter plasmid is indicated schematically. (B) PC enhances transcriptional repression by Gal4-PHO fusions containing the PC-binding domain. L2 cells were cotransfected with 50 ng of reporter plasmid in
the PHO protein itself compromise PcG silencing (10, 13, 25, 29, 52, 70), and PHO silencing has been observed to be PC dependent in in vivo genetic experiments (25, 76). These observations suggest that PHO DNA-binding elements are important components of at least a subclass of PREs.

In the work presented here, we provide a biochemical and functional link between PHO and PC. We found that PHO can bind both PC and PH through a small 55-amino-acid domain. PHO contacts the N-terminal portion of PC but not its C-terminal repression domain that interacts with nucleosomes and, possibly, other PcG proteins (7, 46). In agreement with the inhibitory function of PC, the PC-binding domain but not other portions of PHO mediates transcriptional repression in transfected Drosophila cells. Significantly, concomitant overexpression of PC leads to stronger repression, supporting the notion that PHO acts through recruitment of PC.

These experiments established a correlation between the ability of PHO polypeptides to bind PC in vitro and their capacity to mediate PC-dependent repression in cells. It should be noted that, because we have not used a purified defined PC complex in our experiments, additional factors might be involved. Furthermore, we have not addressed the role of chromatin in PcG silencing, and it is not clear whether the repression we detected in our transfection assay involves any modulation of chromatin structure. Alternatively, PC may directly block the functioning of the general transcription machinery. This possibility is of interest in light of the recently described interaction between PcG proteins and components of the basal machinery (8, 67). The various potential mechanisms of PcG repression (reviewed in reference 21) are not mutually exclusive, and stable silencing might be the result of multiple blocks to transcription, each acting at a different level.

In addition to PC recruitment, we found that PHO interacts with the BRM complex. PHO contains two BRM complex-binding domains, its N-terminal 49 amino acids and the zinc finger DBD. Interestingly, similar to the zinc finger DBDs of Sp1, EKLF, and GATA-1 (2, 37), the PHO DBD recruits the BRM complex via binding to BRM itself. Although the structural determinants are not yet clear, it appears that a class of zinc finger DBDs has evolved that can simultaneously bind DNA and target a chromatin-remodeling complex (37). Previously, we found that the trxG protein Zeste selectively recruits the BRM complex to activate transcription on chromatin templates (40). In contrast to PHO, Zeste does not contact BRM itself but rather interacts with other BRM-associated proteins, including the trxG proteins Moira and Osa. Thus, different regulators target the BRM complex by binding to distinct subunits. Although we did not directly address the role of BRM in transcriptional repression by PHO, there is evidence to indicate that ATP-dependent remodelers are involved in repression as well as activation (34, 45, 53, 80, 81). The role of the BRM complex may simply be to remodel chromatin and facilitate PHO-DNA binding. Alternatively, BRM may play a more direct role in silencing and cooperate with PcG proteins in the formation of repressive higher-order chromatin structures.

In summary, PHO has been implicated in binding the ESC/E(z) complex (64), the PC complex, and the BRM complex (this paper). Likewise, YY1 has been reported to bind the mammalian homologues of the ESC/E(z) complex (65) and the PC complex (26). Moreover, in light of the high conservation of the Kruppel-like zinc finger DBD of YY1, it seems probable that it will also interact with BRM. Most of these associations appear to be relatively weak and of a transient nature, which is typical of a transcription factor-coregulator interaction (55). Thus, the association of PHO with multiple distinct complexes does not necessarily have to occur simultaneously. For instance, one might speculate that the BRM complex helps PHO to gain access to a chromatinized PRE. Subsequent recruitment of the ESC/E(z) complex may lead to histone deacetylation, followed by recruitment of a PC-containing PRC1-related complex.

Although it has been well established that PHO contributes to PRE function, the presence of a series of PHO sites by itself does not suffice to reconstitute a PRE (10). This indicates that PHO may act in a combinatorial fashion with other tethering factors such as GAGA and Zeste. It has become clear that PREs are composed of a multitude of distinct binding elements which, depending on their context, can be redundant with, cooperate with, or antagonize each other (5, 47, 49, 61). For example, the trxG protein GAGA, generally thought of as an activator that induces chromatin remodeling (19, 20, 42, 78), has been implicated in PcG repression (13, 30, 35, 52).

Interestingly, we recently found that GAGA is required for PHO binding to a chromatinized PRE, suggesting that PHO and GAGA elements together may form a functional module (T. Mahmoudi, L. M. P. Zuijderduijn, A. Mohd-Sarip, and C. P. Verrijzer, submitted for publication). Moreover, evidence has been presented indicating that GAGA may be more directly involved in PC recruitment. In immunoprecipitation experiments, GAGA has been found associated with a complex containing PC, PH, PHO, E(z), ESC, and RPD3 (but not PSC) in early embryonic extracts (64). In extracts from older embryos, GAGA was found to be associated with a complex including PC, PH, PSC, and RPD3, whereas PHO coimmunoprecipitates with ESC, E(z), and RPD3. However, in other studies, PHO was not found in the purified ESC/E(z) complex (75), and GAGA was absent from the purified PRC1 complex containing PC, PSC, PH, dRING1, and many of the TATA-binding protein-associated factor components of the general transcription factor TFIID (67, 68).

Interestingly, the sequence-specific DNA-binding protein Zeste was identified as an approximately stoichiometric com-
ponent of PRC1, raising the possibility that Zeste may contrib-
ute to DNA targeting (67). Although Zeste can activate tran-
scription in a BRD-dependent manner (40), it also displays
gene regulation with PcG repressors (59, 60). Thus, similar
to our results with PHO, it appears that Zeste can interact with
the BRM complex as well as with a PC complex. Since neither
LexA-PHO nor LexA-GAGA suffices to mediate stable PcG
silencing (63) and since by themselves the binding elements for
Zeste, PHO, and GAGA do not constitute a PRE, it seems
clear that PRE silencing is not achieved by a single recruiter.

Finally, it should be noted that in addition to setting up the
expression pattern of the homeotic genes, the Gap proteins
may very well play a role in the initial recruitment of PcG
complexes (5, 43). For instance, the early repressor HB binds
the dMi2 chromatin remodeling and histone deacetylase com-
plex that genetically participates in PcG repression (43). Al-
though dMi-2 might interact directly with PcG proteins, an
alternative scenario would be that the deacetylation by dMi-2
creates a chromatin structure conducive to the subsequent
assembly of a silencing PcG complex.

In conclusion, current evidence suggests that PcG-mediated
silencing is not achieved by a one-step mechanism. While the
underlying mechanisms remain enigmatic, it has become clear
that PRE function involves a highly elaborate interplay of
protein-DNA and protein-protein interactions that direct the
formation of a specialized higher-order chromatin structure.
At least three distinct steps appear to be distinguishable: tar-
geting to a specific gene, transcriptional repression, and heri-
table maintenance of the silenced state (4). In this study, we
have investigated the role of one of the PRE-binding proteins,
PHO, in the recruitment of a PC complex. Our results dem-
onstrate a direct biochemical and functional link between PHO
and PC-mediated transcriptional repression.

ACKNOWLEDGMENTS

We are very grateful to Renato Paro, Hugh Brock, Eric Kalkhoven,
and Rob Hoben for the gift of plasmids. Renato Paro for the gift of
anti-Polycomb antibodies, and Jesper Svejstrup, Lee Fradkin, Eric
Kalkhoven, Natalie Little, and members of our laboratory for critical
reading of the manuscript.

REFERENCES

1. Alkema, M. J., M. Bronk, E. Verhoeven, A. Otte, L. J. van Veer, A. Berns,
and M. van Lohuizen. 1997. Identification of Bmi1-interacting proteins as
chromatin remodeling complex, E-RCI, is required for tissue-specific tran-
polymerase II general transcription factors. Protoc. Natl. Acad. Sci. USA
93:5708–5792.
4. Bechle, D., G. Struhl, and J. Muller. 2001. Polycold group proteins and
5. Bienz, M., and J. Muller. 1995. Transcriptional silencing of homeotic genes in
Drosophila. Bioessays 17:775–784.
Drosophila Polycold protein interacts with nucleosomal core particles in
transcription factors bind promoters repressed by Polycold group proteins.
The Drosophila Polycomb group gene, pichicomic, encodes a DNA bind-

http://mcb.asm.org/ Downloaded from on March 26, 2021 by guest
VOL. 22, 2002 PLEIOHOMEOTIC CAN RECRUIT POLYCOMB 7483