












DISCUSSION
Genomic instability caused by defects in DNA repair and the

DNA damage response is a common feature of many tumor cells.
Epigenetic changes can also contribute to oncogenic transforma-

tion. However, the extent to which epigenetic changes can sub-
stitute for chromosomal instability is unclear, since highly malig-
nant cancers are rarely diploid. Inactivation of SNF5 leads to
aggressive tumors in children, and the median cancer onset fol-

FIG. 4. The G2 checkpoint is intact in Snf5-deficient cells. (A) DNA damage signaling is appropriately initiated in Snf5-deficient cells. WT and
Snf5-deficient cells were immunoblotted for ATM (serine 1981), p53 (serine 18), phosphorylated Chk1 (pChk1) (serine 317), p21, and Snf5
expression in the absence (�) or presence (�) of 2.5 Gy IR. Snf5Fl/Fl, Snf5Flox/Flox. (B and C) The mitotic index of Snf5-deficient cells appropriately
decreases following DNA damage and recovers by 6 h. The percentage of pH3-positive cells for unirradiated (�IR) or irradiated (�IR) WT or
Snf5-deficient cells was quantified by fluorescence-activated cell sorting and is noted in each panel. Data represented in panel C are presented as
means for at least three independent experiments � standard errors.

VOL. 28, 2008 SNF5 LOSS LEADS TO CANCER WITHOUT GENOMIC INSTABILITY 6229

 on O
ctober 25, 2020 by guest

http://m
cb.asm

.org/
D

ow
nloaded from

 



lowing Snf5 loss in mouse models is remarkably short for inacti-
vation of a single tumor suppressor. We hypothesized that the
tumor suppressor activity of SNF5 arose not from a role in DNA
repair or maintenance of genome integrity but rather from its role
in the epigenetic control of gene expression.

Here we have demonstrated that loss of a gene involved in
chromatin remodeling leads to aggressive cancers that lack
other genomic aberrations. We show that Snf5 does not play a
direct role in the DNA repair process or in the DNA damage
response. Snf5 does not colocalize with DNA damage-induced
�H2AX foci, its loss does not impair formation or resolution of
�H2AX foci, and its loss does not confer sensitivity to DNA
damaging agents that cause cross-links or DSBs. Furthermore,
the DNA damage response is also intact, as indicated by nor-
mal phosphorylation of ATM, Chk1, and p53 and normal in-
duction of p21, culminating in a G2 arrest following IR. Thus,
we conclude that the mechanism of tumor suppression by
SNF5 does not involve regulating the accessibility of damaged
DNA to repair factors or initiating a proper DNA damage
response.

Mammalian cells contain more than 20 SWI2/SNF2-related

genes, and some of these, including INO80, SWR1, and
RAD54, have been implicated in the execution of chromatin
remodeling associated with DNA repair. Our results are in
contrast to those in previous studies for which increased sen-
sitivity to DNA damage in cells with conditionally inactivated
Snf5 or overexpressed dominant-negative Brg1 was reported
(33, 47). The reason for this discrepancy is not clear, although
it may lie in the toxicity of these events. Both Snf5 inactivation
and overexpression of dominant-negative BRG1 result in im-
paired proliferation after 5 days, making it difficult to interpret
cellular responses to other stimuli. Once cellular viability be-
gins to be impaired, cells may display reduced proliferation
compared to normal cells when exposed to toxic agents (65).
We performed experiments early after Snf5 protein loss but
before secondary effects upon growth had occurred (28, 33) in
order to better distinguish sensitivity to DNA damaging agents
from the lethal effects of Snf5 deletion. In addition to impaired
proliferation, it is conceivable that overexpression of a domi-
nant-negative version of the BRG1 subunit disrupts stoichiom-
etry of the SWI/SNF complex and could cause off-target inter-
actions that affect DNA repair. While we found no direct role

FIG. 5. High-density SNP array analysis of SNF5-deficient MRTs. (A) DNA from 16 primary MRTs, 16 medulloblastomas, and 9 normal blood
samples was analyzed on the Affymetrix 250K SNP array. A closeup view of the SNF5 locus on chromosome 22q11 is shown in the bottom panel.
Red indicates regions of genomic amplifications, while blue indicates regions of genomic deletions. (B) DNA from an additional three primary
MRTs, three MRT cell lines, eight medulloblastomas, and seven normal blood samples was analyzed on the Affymetrix 6.0 SNP array containing
940,000 SNPs. The SNF5 locus on chromosome 22q11 is shown in the bottom panel. (C) GISTIC was utilized to search for small deletions in the
rhabdoid tumors. Deletion of SNF5 itself at 22q11 is the only significant finding (q � 10�24). Other changes are not significant and are of a
magnitude consistent with normal copy number variation.
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for Snf5 in DNA repair nor any alteration of the DNA damage
response up to 4 days after Snf5 deletion, it remains possible
that some of the 1,400-plus genes whose transcription is af-
fected by Snf5 loss (28) may secondarily affect DNA repair at
later time points. Additionally, while we are able to quantita-
tively remove the Snf5 protein as assessed by immunoblotting,
it is conceivable that a small amount of protein remains bound
to chromatin and obscures our ability to detect defects in DNA
repair. We feel that the latter scenario is unlikely due to the
absence of our ability to detect altered localization of Snf5 in
response to IR, the absence of colocalization with �H2AX, the
absence of abnormalities in numerous assays for DNA repair
defects, and ultimately the fact that SNF5-deficient tumors are
diploid and lack instability. While we have found no evidence
of impaired DNA repair processes in Snf5-deficient cells or
recurrent genomic amplifications/deletions in MRTs, it is im-
portant to note that we cannot rule out the possibility that
pro-oncogenic point mutations exist in SNF5-deficient tumors.
Doing this will ultimately require genome-wide single molecule
DNA sequencing.

The intact DNA repair and damage response pathways in
Snf5-deficient cells may underlie the surprising lack of genomic
aberrations detected by chromosome counts of Snf5-deficient
murine tumors and SNP arrays of human MRTs. Thus, we
conclude that genomic instability does not account for the

early onset and rapid development of SNF5-deficient tumors.
Indeed, our data suggest that the epigenetic role of SNF5 in
contributing to transcriptional regulation via nucleosome re-
modeling is the major, and perhaps sole, mechanism by which
SNF5 acts as a tumor suppressor. Emerging evidence has im-
plicated the chromatin remodeling activity of SWI/SNF in con-
trolling the balance between cell proliferation and differenti-
ation during development. Via the incorporation of lineage-
restricted subunits, the SWI/SNF complex serves highly
specific roles in fate determination in many tissues, processes
known to go awry during transformation (2, 16, 34, 35, 73).
Loss of Snf5 disrupts developmental progression, alters the
expression of numerous target genes, and has been implicated
in known tumorigenic events that select for proliferation over
differentiation, including specific upregulation of cyclin D1,
p16INK4a silencing, and derepression of E2F targets (6, 13, 22,
28, 31, 45, 66, 74). Furthermore, we and others have previously
shown that Snf5 loss alters the expression of numerous target
genes (22, 28, 66). Thus, deregulation of transcriptional activ-
ities of the SWI/SNF complex due to SNF5 loss may be equiv-
alent to multiple genetic changes, which undergo similar se-
lective processes during tumorigenesis. In this model, SNF5
loss may result in “epigenetic instability” due to impaired nu-
cleosome positioning or mobility. Since malpositioned nucleo-
somes presumably occur at numerous targets, oncogenesis and
clonal selection may be dependent upon an individual cell
being left with a specific combination of nucleosomes posi-
tioned both in silencing positions over tumor suppressor genes
and in activating positions away from the promoters of genes
that stimulate proliferation and survival. Oncogenic clonal se-
lection, based upon the epigenetic state rather than the genetic
state of a cell, may then explain the emergence of malignant
cells from the otherwise widespread death caused by SNF5 loss
in normal cells.

The epigenetic mechanisms acting in SNF5-deficient cancers
likely are relevant to many other tumor types. A small percent-
age of numerous types of cancers, including acute myeloid
leukemia, hepatocellular carcinoma, colorectal cancer, and
others, do not exhibit detectable chromosomal or microsatel-
lite instability (41, 49, 60). Furthermore, while other pediatric
solid tumors, such as Wilms’ tumor, rhabdomyosarcoma, and
Ewing’s sarcoma, often have genomic anomalies, 56%, 35%,
and 28% of these cancers, respectively, exhibit normal diploid
genomes at the resolution of CGH (Progenetix CGH database
[http://www.progenetix.de/
pgscripts/progenetix/]). In addi-
tion, SNP arrays of acute lymphoblastic leukemias recently
revealed a low instance of genomic aberrations in MLL-rear-
ranged B-cell lineage acute lymphoblastic leukemia, with an
average of one deletion per case. This is noteworthy, since
MLL possesses histone methyltransferase activity, directly in-
teracts with SNF5, and is recruited by SNF5 to cooperatively
regulate tumor suppressor loci (31, 41, 42), raising the possi-
bility of a shared epigenetic mechanism between SNF5-mutant
and MLL-mutant cancers. Collectively, these findings provide
novel insight into the fundamental mechanisms required for
oncogenic transformation and raise the intriguing possibility
that epigenetic mechanisms can be sufficient to eliminate the
need for genome instability during cancer formation.

Unlike genetic mutations, epigenetic changes are potentially
reversible, and this may have important therapeutic relevance.

FIG. 6. Cyclin D1 overexpression significantly correlates with the
MRT phenotype. Affymetrix U133A2 microarray data from a panel of
medulloblastomas, normal cerebellum, and MRTs were visualized us-
ing GeneSpring GX 7.3.1 software. Cyclin D1 (CCND1) overexpres-
sion significantly correlated with the MRT class (P � 1.74 � 10�14), in
contrast to the expression of other cyclins associated with cell prolif-
eration. Elevated expression of c-myc is evident in 91% of MRT cases
compared to 42% of medulloblastomas. Red and blue indicates com-
paratively high- and low-level gene expression, respectively.
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Early attempts at developing drugs capable of altering the
epigenetic state of cancer cells have met with some success,
since the DNA methylation inhibitors decitabine and 5-azacy-
tidine have both been FDA approved for the treatment of
myelodysplastic syndrome and the histone deacetylase inhibi-
tor vorinostat has been FDA approved for cutaneous T-cell
lymphoma. Since the large majority of cancers that arise fol-
lowing SNF5 loss lack genomic aberrations, these tumors may
constitute a useful model both which to investigate the mech-
anisms by which epigenetic changes contribute to oncogenesis
and also with which to test therapeutic interventions aimed at
reversing the epigenetic state of cancer.
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