Phosphorylated YDXV Motifs and Nck SH2/SH3 Adaptors Act Cooperatively To Induce Actin Reorganization

Ivan M. Blasutig, 1,2 Laura A. New, 3 Ajitha Thanabalasuriar, 4 Thamara K. Dayarathna, 5 Marilyn Goudreault, 1 Susan E. Quaggin, 1, 6, 7 Shawn S.-C. Li, 5 Samantha Gruenheid, 4 Nina Jones, 3 and Tony Pawson 1, 2*

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada; Department of Molecular and Medical Genetics, 4388 Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Microbiology and Immunology, Lymann Saff Medical Building, 3775 University St., McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Biochemistry, Schulich School of Medicine, Faculty of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Institute of Medical Science, 7213 Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Division of Nephrology, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada

Received 26 September 2007/Returned for modification 2 November 2007/Accepted 4 January 2008

We have analyzed the means by which the Nck family of adaptor proteins couples adhesion proteins to actin reorganization. The nephrin adhesion protein is essential for the formation of actin-based foot processes in glomerular podocytes. The clustering of nephrin induces its tyrosine phosphorylation, Nck recruitment, and sustained localized actin polymerization. Any one of three phosphorylated (p)YDXV motifs on nephrin is sufficient to recruit Nck through its Src homology 2 (SH2) domain and induce localized actin polymerization at these clusters. Similarly, Nck SH3 mutants in which only the second or third SH3 domain is functional can mediate nephrin-induced actin polymerization. However, combining such nephrin and Nck mutants attenuates actin polymerization at nephrin-Nck clusters. We propose that the multiple Nck SH2-binding motifs on nephrin and the multiple SH3 domains of Nck act cooperatively to recruit the high local concentration of effectors at sites of nephrin activation that is required to initiate and maintain actin polymerization in vivo. We also find that YDXV motifs in the Tir protein of enteropathogenic Escherichia coli and nephrin are functionally interchangeable, indicating that Tir reorganizes the actin cytoskeleton by molecular mimicry of nephrin-like signaling. Together, these data identify pYDXV/Nck signaling as a potent and portable mechanism for physiological and pathological actin regulation.

Adaptor proteins, composed entirely of interaction domains, can link cell surface receptors to specific intracellular targets. The Nck family of adaptors is essential for early embryonic development in the mouse and functions in coupling phosphorysine (pTyr) signals to actin cytoskeletal reorganization (3). Mammals carry two related Nck genes, Nck1 and Nck2 (collectively termed “Nck”), each of which encodes a protein with three Src homology 3 (SH3) domains (SH3-1, -2, and -3) and a C-terminal SH2 domain (5, 20). Through its SH2 domain, Nck binds to specific pTyr-containing sites on activated receptors and scaffolds, and through its SH3 domains, Nck binds to proline-rich motifs in downstream effectors (6, 23). These latter targets include proteins involved in the control of cellular actin dynamics, such as N-WASP, WASP-interacting protein (WIP), PAK serine/threonine kinases, SPIN90, and dynamin (1, 2, 24, 29, 39). Indeed, artificially clustering the Nck SH3 domains at the plasma membrane induces actin polymerization (28).

In one physiological example, the Nck SH2 domain associates with nephrin, a transmembrane adhesion protein with eight extracellular immunoglobulin repeats and a short C-terminal cytoplasmic tail (Fig. 1A) (17, 22, 37). Nephrin is critical for the formation and maintenance of actin-dependent cellular protrusions known as foot processes, which are elaborated by specialized cells (termed podocytes) within the glomeruli of kidneys (32). Nephrin also anchors a specialized tight junction (the slit diaphragm) that forms between interdigitating foot processes of adjacent podocytes and is essential for the filtration barrier function of the glomeruli (Fig. 1A) (32). Loss-of-function mutations in the human gene encoding nephrin (NPHS1) cause defective actin organization in podocytes, foot process fusion (termed effacement), and proteinuria, resulting in a congenital nephrotic syndrome of the Finnish type (18); similar defects are seen in nephrin-deficient mice (26).

The nephrin cytoplasmic tail is phosphorylated on tyrosine residues by Src family kinases, both in vivo and in vitro, and in cell-based assays, this phosphorylation can be induced by the clustering of nephrin (17, 19, 21, 22, 38). Three sites of nephrin tyrosine phosphorylation are located in YDXV motifs, which correspond to a consensus binding site for the Nck SH2 domain (Fig. 1B) (11, 17, 22, 34, 37). The clustering of full-length nephrin or a CD16/7-nephrin chimeric protein leads to Nck recruitment through the phosphorylated YDXV sites and Nck-dependent actin polymerization (Fig. 1C) (17, 22, 37). As with nephrin, targeted deletion of Nck2 in the podocytes of...
Nck1−/− mice leads to a failure in the formation of foot processes and proteinuria (17). Together, these data suggest that Nck adaptors link nephrin to the reorganization of the actin cytoskeleton in a fashion that is important for the architecture and function of podocytes.

Arguing for the importance of Nck in coupling pTyr signals to actin reorganization are the facts that pathogenic microorganisms, such as enteropathogenic Escherichia coli (EPEC) and vaccinia virus, have evolved related strategies to bind the Nck SH2 domain and thereby modify the actin cytoskeletons of infected cells (7, 12, 15). In a pathological context, EPEC recruits Nck by injecting a bacterially encoded protein, “translocated intimin receptor” (Tir), into the host cell (7, 15). Tir spans the plasma membrane twice, yielding an extracellular region that binds the intimin protein on the bacterial surface and two cytoplasmic tails that associate with regulatory proteins to induce ectopic actin-based structures termed pedestals (40). Tir is clustered through its association with intimin and is consequently phosphorylated by cytoplasmic tyrosine kinases, notably on Y474, which lies in an Nck SH2 domain recognition motif (YDEV) (7, 15). A Tir peptide encompassing phosphorylated Y474 binds the SH2 domains of Nck1 and Nck2 with high affinity in vitro (Kd between 100 and 300 nM) by engaging residues from the −2 to the +5 positions (8, 11, 15). The replacement of Y474 with phenylalanine or the inactivation of both Nck genes in infected cells markedly attenuates the ability of EPEC to induce actin-based pedestals, indicating that the recruitment of Nck to the phosphorylated (p)YDEV Tir site is important for the reorganization of host cell actin (7, 15).

Here, we have pursued the mechanisms through which adhesion proteins and Nck adaptors synergize to elicit potent and sustained reorganization of the actin cytoskeleton and we have explored the relationship between nephrin and EPEC Tir signaling.

FIG. 1. (A) Nephrin is a transmembrane protein consisting of eight extracellular immunoglobulin (Ig)-like domains, a fibronectin type three (FNIII) domain, a transmembrane region, and an intracellular region. Nephrin is located at the slit diaphragm, where it interacts with nephrin molecules from adjacent foot processes of podocyte cells. Upon tyrosine phosphorylation by Fyn, nephrin recruits the adaptor protein Nck, which is required for proper foot process formation. (B) An alignment of the intracellular regions of human and mouse nephrin. The tyrosine residues located in the three YDXV motifs are shown (Y is shown in red). The sequences of the mouse peptides used for binding studies are underlined. Numbers to the left of the sequence denote amino acid residues. (C) A schematic of the CD16/7-nephrinIC clustering system is shown. CD16/7-nephrinIC fusion protein localizes to the plasma membrane in cells. Upon the addition of anti-CD16 antibodies to the cellular growth medium, the fusion protein clusters, causing nephrinIC to become phosphorylated and recruit Nck, leading to localized polymerization of actin.
MATERIALS AND METHODS

Plasmids. The construct consisting of the intracellular region of nephrin [referred to as CD167-nephrin(WT)IC-GFP] and green fluorescent protein (GFP) and the CD167-nephrin(Y3F)IC-GFP construct have previously been described (17). To generate CD167-nephrin(WT)IC-myc, the intracellular domain of human nephrin was PCR amplified to generate an in-frame fusion with CD167, followed by a carboxy-terminal myc epitope tag. The CD167-nephrin(Y1193/1217F)IC, CD167-nephrin(Y1176/1178F)IC, and CD167-nephrin(Y1176/1195F)IC constructs were generated by site-directed mutagenesis of CD167-nephrin(WT)IC-GFP. The CD167-nephrin(Y1176/1195F)IC-Tir-GFP construct was generated by amplifying nephrin(Y3F) with a primer to create the Tir peptide sequence PEEHHYDEVAADPG in frame with both the upstream nephrin(Y3F) and downstream GFP. Full-length human Nck1 (BC06403) cDNA (Open Bio-systems) and Nck1 SH3-1, -2, -3 (35) were PCR amplified and inserted into the Creator recombination system vector V180 containing an N-terminal triple-Flag tag (9), Nck1-SH3-1, -2, -3 (W143K and W229K); Nck1 SH3-1, -3 (W38K and W229K); and Nck1 SH3-1, -2 (W38K and W143K) were created by site-directed mutagenesis. The GFP-N-WASP construct has previously been described (16).

Tissue culture. All cells were grown in Dulbecco's modified Eagle's medium-high glucose supplemented with 10% fetal bovine serum. Mouse embryonic fibroblasts (MEFs) lacking both Nck1 and Nck2 have previously been described (3). Transient transfections in Nck-null MEFs were performed by using Effectene (Qiagen) and by following the manufacturer's guidelines. Transfections in HEK cells were performed using polyethyleneimine.

Antibody clustering experiments and cell imaging. A total of 10 × 10⁶ MEFs were seeded onto glass coverslips in a six-well plate and transfected after 24 h. Twenty hours following transfection, the cells were incubated with 1 μg/ml of mouse monoclonal anti-CD16 (Sigma) or 0.5 μg/ml of anti-nephrin 50A9 (33) for 30 min (unless specified otherwise) at 37°C, washed once in Dulbecco's modified Eagle's medium with 10% fetal bovine serum, incubated with 1 μg/ml Alexa Fluor 488-conjugated goat anti-mouse secondary antibody (Molecular Probes) for 30 min (unless otherwise specified), and then fixed immediately in 4% paraformaldehyde and permeabilized. Staining for Flag-Nck was performed using a rabbit polyclonal anti-Flag antibody (Sigma), followed by Alexa Fluor 560-conjugated goat anti-rabbit secondary antibody (Molecular Probes). Filamentous actin was visualized with Texas Red-conjugated phalloidin (Molecular Probes). We performed staining of extracellular clusters by fixing the cells as described above and incubating them with a fluorescently labeled donkey anti-goat Texas Red-conjugated antibody without permeabilization. If stated, this was then followed by a second round of fixation, permeabilization, and then staining for F-actin as described above.

Cells were imaged using a Leica DMIRE2 fluorescence microscope (with Leica PL Fluotar 63 x/0.70 objective) and a Hamamatsu C4742-95 charge-coupled device camera. Images were captured and processed using Openlab and ImageJ software.

Immunoprecipitations and immunoblotting. Immunoprecipitations and immunoblotting procedures have been described previously (17). Briefly, for phosphorylation analyses and coimmunoprecipitation experiments, cells were stimulated for 10 min at 37°C by using a 1 μg/ml dilution of anti-CD16 antibody. Lysates were prepared from transfected cells by using phospholipase C lysis buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 1% glycerol, 1% Triton X-100, 15 mM MgCl₂, 1 mM EGTA, 10 mM Na-Pi, 100 mM NaF) supplemented with fresh protease inhibitors. Commercially available antibodies used were as follows: monoclonal anti-Flag clone M2 (Sigma), monoclonal anti-pTyr clone 4G10 (Upstate), polyclonal anti-GFP 290 (Abcam), monoclonal anti-Nck2 (BD Pharmin- gen), and polyclonal anti-N-WASP H-100 (Santa Cruz).

Fluorescence polarization. Fluorescence-labeled peptides were synthesized as described previously (36) and purified by reverse-phase high-performance liquid chromatography. The identities of the fluorescence-labeled peptides were confirmed by mass spectrometry. Glutathione S-transferase (GST) fusions of Nck SH2s were produced in E. coli strain BL21 CodonPlus (Strategene) at 18°C overnight. Cells were centrifuged and disrupted in phosphate-buffered saline (PBS; pH 7.4) containing egg lysozyme (0.5 mg/ml Sigma). Complete protease inhibitor cocktail (Roche Applied Science), Triton X-100 (1%), and Benzonase (0.5 μl/ml Novagen) for 10 min. The supernatants were passed over glutathione-Sepharose beads (Amersham Biosciences), which were then washed with PBS. Proteins were eluted using 20 mM reduced glutathione (EMD) and further purified using fast protein liquid chromatography in PBS. In the equilibrium binding studies, the fluorescence-labeled peptide probes were dissolved in PBS and an incremental amount of GST fusion proteins in PBS was added. The reaction mixtures were allowed to stand for 10 min at room temperature prior to measurements. All fluorescence polarization measurements were conducted at 22°C using a Beacon 2000 fluorescence polarization system (PanVera, Madison, WI) equipped with a 100-μl sample chamber. Results were analyzed using GraphPad Prism 3 software.

Bacterial strains. The following bacterial strains were used in this study: EPECΔastir/Tir Y474F (14), EPECΔastir/Tir Y474F-nephrin Y1217, and EPECΔastir/Tir Y474F-nephrin Y1217F (this study). To construct EPECΔastir/Tir Y474F-nephrin Y1217 and EPECΔastir/Tir Y474F-nephrin Y1217F, Tir Y474F in pACYC184 (10) was used as a template and PCR amplification was performed to make an in-frame fusion of TirY474F and nephrin amino acids 1212 to 1225. Following TOPO cloning (Invitrogen) and sequence verification, the amplified product was cloned into pACYC184. Following verification, the plasmid was introduced into EPECΔastir by electroporation, followed by selection on chloramphenicol plates (30 μg/ml).

Immunofluorescence microscopy of EPEC. One milliliter of 2.5 × 10⁶ HeLa cells was added to each well of a 24-well plate containing a 12-mm glass coverslip and grown overnight. Monolayers were infected with 0.5 μl of an overnight culture of the indicated bacterial strains and incubated for 3 h, followed by the addition of gentamicin (100 μg/ml) for 1 h. At this point,gentamicin was reduced to 10 μg/ml, and incubation continued for an additional 2.5 h to promote pedestal elongation (31). Immunofluorescence microscopy and image analysis were performed as described previously (15) by using mouse monoclonal anti-Tir 2A8, mouse monoclonal anti-pTyr 4G10, and rabbit anti-EPEC, followed by Alexa Fluor 488- or 647-conjugated secondary antibodies (Molecular Probes). Filamentous actin was visualized with Alexa Fluor 560-conjugated phalloidin (Molecular Probes). The cells were imaged on a Zeiss Axios- plan2 epifluorescence microscope or an Olympus Fluo1000 confocal microscope using MetaMorph software.

RESULTS

Nephrin/Nck clusters induce sustained actin polymerization at the membrane. We analyzed the kinetics of Nck recruitment to nephrin and the consequent actin polymerization by clustering a full-length human nephrin or a chimeric protein in which the extracellular domain of CD16 and the transmembrane domain of CD7 are fused to CD167-nephrin(WT)IC. For this purpose, we used a MEF cell line derived from Nck1⁻/⁻ Nck2⁻/⁻ embryos that lack intrinsic Nck proteins (3). These cells were transfected with Flag-tagged Nck1 and CD16/7-nephrin(WT)IC with GFP fused to the C terminus. Prior to the addition of clustering antibodies, both chimeric nephrin proteins and Flag-Nck1 were observed in diffuse localization patterns (Fig. 2A, row 1). The addition of anti-CD16 antibodies, followed by an Alexa Fluor 488 (green) secondary antibody, induced rapid clustering of CD16/7-nephrin(WT)IC at the plasma membrane, with sites of nucleation appearing as early as 10 min poststimulation (5-min incubation with primary antibodies, followed by a 5-min incubation with secondary antibodies) (Fig. 2A, row 2). Both Nck and weak actin polymerization were also detected at these nucleation sites within 10 min, suggesting that a fraction of chimeric nephrin was functionally activated within this time frame (Fig. 2A, row 2). After 60 min of antibody stimulation, there was a strong increase in the amount of CD16/7-nephrin(WT)IC located in clusters and a corresponding loss of diffusely localized protein (Fig. 2A, row 3). Concomitantly, Nck was more prominently co-clustered with the chimeric nephrin protein at 60 min and actin polymeriza-
tion emanating from these clusters was more robust (Fig. 2A, row 3). At 100 min of stimulation, the chimeric nephrin clusters had grown further, were associated with more intense Nck staining, and maintained polymerized actin (Fig. 2A, row 4). Both Nck and polymerized actin were still readily detected at clusters of CD16/7-nephrin(WT)IC after 300 min (Fig. 2A, row 5). These experiments show that the activation of chimeric nephrin, the recruitment of Nck, and the polymerization of actin are initiated rapidly but also persist for an extended period. Similar results were observed with full-length human nephrin clustered with an antinephrin antibody (data not shown), suggesting that these are intrinsic functions of the nephrin cytoplasmic region and that the CD16/7-nephrin-(WT)IC chimera is a valid surrogate for native nephrin in this assay. All subsequent experiments were performed with the CD16/7-nephrin(WT)IC protein or mutants thereof.

Nephrin can be endocytosed upon clustering at the membrane (27). We therefore analyzed whether CD16/7-nephrin(WT)IC is internalized and whether actin polymerization occurs at internal sites. To this end, we stimulated cells expressing CD16/7-nephrin(WT)IC with anti-CD16 antibodies, followed by Alexa Fluor 488-conjugated goat anti-mouse secondary antibodies (Fig. 3), for various periods of time. We then fixed the cells and stained them with Texas Red-conjugated donkey anti-goat antibodies in the absence of membrane permeabilization, to visualize extracellular clusters (shown in red). Yellow clusters represent nephrin present at the cellular membrane, while green clusters represent internalized nephrin. Scale bars = 10 μm.
In contrast, SH2 (mean) activated CD16/7-nephrin(WT)IC clusters can be relocalized to intracellular structures (Fig. 3). Further staining of these cells with phalloidin revealed that the majority of nephrin-induced actin polymerization occurs at the plasma membrane, although a small number of internalized clusters also contain polymerized actin in their vicinities (data not shown). Taken together, these data indicate that the CD16/7-nephrin(WT)IC clusters are dynamic, but that nephrin-induced actin polymerization occurs primarily at the plasma membrane.

To examine biochemically whether the amount of CD16/7-nephrin(WT)IC phosphorylation and Flag-Nck1 recruitment increases over time following incubation with clustering antibodies, we performed Western blotting on lysates from cells that were stimulated with anti-CD16 antibodies for various periods (Fig. 2B). In unstimulated cells, we observed a small amount of CD16/7-nephrin(WT)IC phosphorylation, but Flag-Nck1 was not detectably coprecipitated with nephrin. At 5 min of stimulation, there was a marked increase in CD16/7-nephrin(WT)IC tyrosine phosphorylation and Flag-Nck1 was detected in CD16/7-nephrin(WT)IC immunoprecipitates. Extending the time for which cells were incubated with anti-CD16 antibodies increased both the amount of CD16/7-nephrin(WT)IC tyrosine phosphorylation and its association with Flag-Nck1, consistent with the results obtained by fluorescence imaging of whole cells.

Nck recruitment to nephrin and localized actin polymerization requires a functional Nck SH2 domain. The association of Nck with nephrin involves the phosphorylation of three nephrin motifs with similar affinities. To determine whether SH2-mediated Nck recruitment to nephrin and localized actin polymerization are mediated by the Nck SH2 domain, we conducted the test, we mutated a conserved Arg required for pTyr recognition (R308 in the SH2 domain of Nck1) to Met (referred to as Nck1 SH2-M) (Fig. 4A). We then compared WT and SH2-M Nck1 for their activities in the clustering assay, following transfection into Nck1+/−/− Nck2+/−/− MEFs, by scoring cells expressing both Flag-Nck1 and CD16/7-nephrin(WT)IC for the presence of actin polymerization at nephrin clusters. WT Nck1 localized to CD16/7-nephrin(WT)IC clusters and induced localized actin polymerization in 74.4% ± 8.9% (mean ± standard deviation) of cells (Fig. 2A, row 2, and 4D). In contrast, SH2-M Nck1 did not localize to CD16/7-nephrin(WT)IC clusters, and did not induce significant actin polymerization (13.7% ± 5.6% of cells) (Nck1 SH2-M) (Fig. 4C and D). These results argue that Nck must be recruited to clusters through an SH2-pTyr interaction for nephrin to efficiently induce actin polymerization.

To determine whether SH2-mediated Nck recruitment to nephrin might influence its interactions with downstream effectors, we performed coimmunoprecipitation experiments using cells expressing Myc-tagged CD16/7-nephrin(WT)IC, Flag-Nck1, and GFP-tagged N-WASP as potential Nck targets. Clustering the chimeric nephrin protein significantly increased the association of Nck1 with N-WASP over the basal level in unstimulated cells (Fig. 4B). However, this enhanced Nck/N-WASP interaction induced by nephrin clustering was not seen in cells expressing the Nck1 SH2− mutant (Fig. 4B). This is likely the result of an avidity effect produced by Nck clustering through nephrin, although the possibility that Nck undergoes conformational alterations cannot be excluded.

Nck SH2 domain binds individual phosphorylated YDXV nephrin motifs with similar affinities. To assess their relative potential to recruit Nck, we investigated the affinity with which each of the three pYDXV phosphopeptides from murine nephrin binds the Nck1 or Nck2 SH2 domains (for consistency, we used human numbering for the YDXV sites), using a fluorescence polarization binding assay. Both GST-Nck1 and GST-Nck2 SH2 domains bound to each of the pYDXV sites, with dissociation constants in the 1 μM range, with the exception of GST-Nck2 SH2 binding to nephrin pY1176, which showed a K_d of 0.46 ± 0.04 μM (Table 1). Similar affinities were observed for the GST-Nck1 SH2 and a His-tagged Nck1 SH2 domain binding to the nephrin pY1193 phosphopeptide (Table 1). The binding affinities of the GST-Nck1 and GST-Nck2 SH2 domains toward the pY474 peptide from the EPEC Tir protein were typically stronger than those observed for nephrin pYDXV sites, consistent with previously described values (Table 1) (11, 15). To determine whether the presence of multiple binding sites on a single peptide could increase the affinity for Nck SH2 domains, bisphosphorylated peptides were generated that encompassed the phosphorylated nephrin sites pY1176 and pY1193 (Table 1). The dissociation constants observed for both the GST-Nck1 domain and the GST-Nck2 SH2 domain for the doubly phosphorylated peptides were more than 10-fold stronger than those for the single sites. This result is likely due to an avidity effect caused by the dimerization of the GST moiety, as no difference in binding to the singly or doubly phosphorylated peptides was observed for the His-tagged Nck1 SH2 domain (Table 1).

Individual YDXV pTyr sites of nephrin can recruit Nck and induce actin polymerization. Mutation of all three YDXV tyrosine residues to phenylalanine [CD16/7-nephrin(Y3F)IC] greatly reduces nephrin phosphorylation and suppresses Nck recruitment and actin polymerization at nephrin clusters (10.1% ± 1.6%) (Fig. 5A, B, and C) (17). However, as shown above, each individual site binds with relatively high affinity to the Nck SH2 domain. To investigate whether any individual YDXV pTyr site is sufficient for Nck recruitment and actin polymerization, double Y-to-F mutants in CD16/7-nephrin(WT)IC were created that leave only a single Nck YDXV motif in each protein. Immunoprecipitation and blotting experiments revealed that the extent of Nck interaction was reduced in these mutants compared to that in WT nephrin (Fig. 5A).

However, all three mutants could still recruit Nck to clusters and induce localized actin polymerization, suggesting that each individual tyrosine residue is sufficient for actin polymerization mediated by WT Nck in this assay (the percentages of cells that showed actin polymerization at nephrin clusters were 75.5% ± 9.8% for Y1193/1217F, 67.1% ± 10.4% for Y1176/1217F, and 68.5% ± 4.8% for Y1176/1193F) (Fig. 5B and C).

Nephrin-induced actin polymerization requires the second or third SH3 domain of Nck. We also tested the roles of specific Nck SH3 domains in nephrin-induced actin polymerization. A mutant Nck1 protein with inactivating Trp-to-Lys substitutions in all three SH3 domains (SH3-1Δ,2Δ,3Δ) (Fig.
FIG. 4. Nephrin-induced actin polymerization is dependent on the SH2, SH3-1, and SH3-2 domains of Nck. (A) The SH2 and SH3 domains of Nck1 were rendered nonfunctional by specific amino acid substitutions. The various constructs used are depicted, with the mutations indicated in red. (B) Nck-null MEFs were cotransfected with myc-tagged CD16/7-nephrin(WT)IC, GFP-tagged N-WASP, and either WT or mutant forms of Flag-Nck1, as indicated at the top of the panels. GFP-N-WASP was immunoprecipitated (IP) from cells expressing CD16/7-nephrin(WT)IC-myc, either unclustered (~H11002) or clustered with anti-CD16 antibodies for 10 min (~H11001). Immunoprecipitates were immunoblotted (IB) with antibodies to N-WASP to identify GFP-N-WASP (top panel) and Flag to identify GFP-N-WASP-associated Nck1 proteins (middle panels). The middle panels show two different exposures of the same blot. The bottom panel shows Nck1 levels in whole-cell lysates. (C) Nck-null MEFs were cotransfected with GFP-tagged CD16/7-nephrin(WT)IC and various forms of Flag-Nck1. Cells were incubated with anti-CD16 antibody for 30 min, followed by a 30-min incubation with goat anti-mouse Alexa Fluor 488 antibodies. The resulting localization of CD16/7-nephrin(WT)IC (green), Flag-Nck (anti-Flag [blue]), and F-actin (phalloidin [red]) is shown. Scale bars = 10 μm. (D) Cells coexpressing GFP-tagged CD16/7-nephrin(WT)IC with various Flag-Nck1 mutants were analyzed for the presence of actin polymerization at clusters. The numbers of cells that showed actin polymerization at CD16/7-nephrin(WT)IC clusters were scored and are presented as percentages of total cells analyzed. Numbers above each bar indicate the total number of cells counted. Error bars represent standard deviations calculated from at least four independent experiments. Asterisks denote differences with statistical significance (P < 0.005) relative to the WT, as determined by the Student t test.
2.0%) (Fig. 4B, C, and D). In contrast, the Nck1
SH3
intact) also mediated actin polymerization at nephrin clusters, Nck1
SH3
2
had only a single functional SH3 domain (Fig. 4A). Nck1
two SH3 domains were inactivated and the proteins therefore
in the nephrin assay, we tested Nck1 mutant proteins in which
mains is essential for nephrin-induced actin polymerization.
ability of Nck to recruit actin regulators through its SH3 do-
ations were severely attenuated in their induction of localized
actin polymerization at CD16/7-nephrin(WT)IC clusters (6.3%
and each of the double-nephrin tyrosine mutants (Y1176/
Nephrin Y1176 + Y1193 GPCHLpYDEVREYVWGPpYDEVQMDP
N-WASP (Fig. 4B), and it did not support localized actin polymer-
ization upon clustering of CD16/7-nephrin(WT)IC (10.2% ±
2.6%) (Fig. 4C and D). However, the \(SH3\)-1\,-2\,-3\) Nck1
mutant protein was recruited to nephrin clusters, indicating that
the binding of Nck to nephrin is not dependent on the SH3
domains (Fig. 4C). These observations demonstrate that the
ability of Nck to recruit actin regulators through its SH3 do-
main is paired in combination.

To ascertain which of the three Nck SH3 domains are active
in the nephrin assay, we tested Nck1 mutant proteins in which
two SH3 domains were inactivated and the proteins therefore
had only a single functional SH3 domain (Fig. 4A). Nck1
SH3-2\,-3\) (in which only the first SH3 domain is functional)
interacted very weakly with GFP-N-WASP and did not induce
actin polymerization at CD16/7-nephrin(WT)IC clusters (6.3% ±
2.0%) (Fig. 4B, C, and D). In contrast, the Nck1 \(SH3\)-1\,-3
mutant (with only the SH3-2 domain intact) associated more
strongly with GFP-N-WASP, albeit at a reduced level compared
with that of WT Nck, and induced full actin polymerization
at nephrin clusters (71.7% ± 8.9%) (Fig. 4B, C, and D). The
Nck1 \(SH3\)-1\,-2
mutant (with only the SH3-3 domain intact) also mediated actin polymerization at nephrin clusters,
although with lower efficiency (51.3% ± 5.2%), consistent with
its reduced binding to GFP-N-WASP compared to that with
Nck1 \(SH3\)-1\,-3
(Fig. 4B, C, and D). These results show that the
SH-2 and SH-3 domains are individually sufficient to
bind N-WASP and induce a degree of localized actin polymer-
ization in response to nephrin clustering, whereas the SH-3
domain is not. However, the efficiency of Nck1 association with
N-WASP was significantly potentiated by the presence of mul-
tiple functional SH3 domains in the same Nck molecule. We
did not observe any cooperative effect of the SH-1 domain
with the SH-3 domain, since an \(SH3\)-2
Nck1 mutant (with
functional SH-1 and SH-3 domains) showed no enhanced
actin polymerization compared with that of a variant contain-
ing only a functional SH3-3 domain (58.1% ± 4.3%) (Nck1
\(SH3\)-1\,-2
) (Fig. 4D).

Cooperative effects of multiple Nck SH2 domain-binding
sites and Nck SH3 domains in nephrin-induced actin polymer-
ization. We next investigated whether nephrin and Nck mu-
tants that were individually sufficient to induce actin polymer-
ization retained this activity when combined. We transfected
Nck-null MEFs with Nck1 \(SH3\)-1\,-3
(the most active of the
Nck mutants containing only a single functional SH3 domain) and
each of the double-nephrin tyrosine mutants (Y1176/
1193F, Y1176/1217F, and Y1193/1217F). All of these combi-
nations were severely attenuated in their induction of localized
actin polymerization (values were 21.8% ± 7.4% for Y1193/
1217F, 22.8% ± 8.5% for Y1176/1217F, and 16.2% ± 7.5% for
Y1176/1193F) (Fig. 6). These results indicate that while each
individual nephrin YDXV phosphorylation site is minimally
sufficient to induce actin polymerization when paired with
three functional Nck SH3 domains and the individual SH3-2
domain is minimally sufficient to induce actin polymerization
when paired with three functional nephrin YDXV motifs, actin
polymerization is strongly reduced when each minimal element
(a single nephrin YDXV motif and a single Nck SH3 domain)
is paired in combination.

To determine whether the second and third SH3 domains of
Nck can functionally complement one another when present
on different Nck molecules, we cotransfected cells with Y1176/
1217F mutant nephrin, Flag-Nck1 \(SH3\)-1\,-3
, and Flag-Nck1
\(SH3\)-1\,-2
. These cells did not show any increase in localized
actin polymerization (21.0% ± 4.7%) compared to the level in
cells expressing Y1176/1217F nephrin and Nck1 \(SH3\)-1\,-3
(Fig. 6). This result demonstrates that the second and third
SH3 domains of Nck cannot function in trans to restore local-
ized actin polymerization at Y1176/1217F nephrin clusters.
Taken together, these results suggest that oligomerization of
the signaling proteins downstream of nephrin may be impor-
tant in transmitting a signal for efficient actin polymerization.

The Nck SH2 binding motifs of nephrin and Tir are func-
tionally interchangeable. The Tir protein of EPEC has an Nck
SH2 binding site (Y474) that is required for pedestal formation
induced at the sites of bacterial attachment (7, 15). The Tir
Y474 site has a core YDXV sequence, although it employs a
more extended motif to engage the Nck SH2 domain (11). We
have proposed that EPEC Tir has evolved to mimic Nck SH2
domain-binding sites, such as those found on nephrin (17). To
test this theory, we generated a nephrin variant in which a
14-amino-acid peptide encompassing the human nephrin
Y474 site has a core YDXV sequence, although it employs a
more extended motif to engage the Nck SH2 domain (11). We
have proposed that EPEC Tir has evolved to mimic Nck SH2
domain-binding sites, such as those found on nephrin (17). To
test this theory, we generated a nephrin variant in which a
14-amino-acid peptide encompassing the Tir Y474 site is fused
to the intracellular region of CD16/7-nephrin(Y3F)IC (Fig. 7A).
The only YDXV site in this protein is therefore provided by
the motif engrafted from EPEC Tir. While CD16/7-
nephrin(Y3F)IC was inactive (Fig. 5B), the incorporation of
the Tir Y474 site was sufficient to rescue Nck recruitment and actin polymerization at nephrin clusters (Fig. 7B).

TABLE 1. Peptides binding affinities of Nck SH2 domains

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>(K_d) for*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nephrin Y1176</td>
<td>MAFPGHpYDEVERRYG</td>
<td>–</td>
</tr>
<tr>
<td>Nephrin Y1193</td>
<td>GWGGLpYDEVQMDP</td>
<td>NB 1.66 ± 0.36 1.60 ± 0.20 1.03 ± 0.12</td>
</tr>
<tr>
<td>Nephrin Y1217</td>
<td>YE DPRGlpYDQVAADM</td>
<td>– 1.05 ± 0.32 0.82 ± 0.06</td>
</tr>
<tr>
<td>Nephrin Y1176 + Y1193</td>
<td>GPCHLpYDEVREYVWGPpYDEVQMDP</td>
<td>NB 0.08 ± 0.01 0.04 ± 0.003 0.85 ± 0.06</td>
</tr>
<tr>
<td>Tir Y474</td>
<td>EEEHpYDEVAA DP</td>
<td>– 0.13 ± 0.02 0.68 ± 0.12</td>
</tr>
</tbody>
</table>

* Values are expressed as \(\mu M\) ± standard error. –, not analyzed; NB, no binding.
FIG. 5. A single YDXV motif on nephrin is sufficient to recruit Nck and induce actin polymerization. (A) Nck-null MEFs were transfected with either GFP-tagged CD16/7-nephrin(WT)IC or mutants with two or three nephrin YDXV tyrosine residues mutated to phenylalanine as indicated, together with WT Flag-Nck1. Cells were incubated with anti-CD16 antibodies for 10 min (+). GFP-tagged CD16/7-nephrin(WT)IC was immunoprecipitated (IP), and immunoprecipitates were immunoblotted (IB) with antibodies to GFP to identify CD16/7-nephrinIC (top panel) and Nck to identify CD16/7-nephrinIC-associated Flag-Nck1 (middle panel). The bottom panel shows Flag-Nck1 levels in whole-cell lysates. (B) Cells were transfected as for panel A, and GFP-tagged CD16/7-nephrin IC mutants were clustered with anti-CD16 antibodies for 30 min, followed by clustering with goat anti-mouse Alexa Fluor 488-conjugated antibodies for 30 min. Immunofluorescence localization of GFP-tagged CD16/7-nephrinIC mutants (green), Flag-Nck (anti-Flag [blue]), and F-actin (phalloidin [red]) is shown. Scale bars = 10 μm. (C) Cells expressing both Flag-Nck1 and GFP-tagged CD16/7-nephrinIC (WT or mutants) were analyzed for the presence of actin polymerization at clusters. The numbers of cells that showed actin polymerization at CD16/7-nephrinIC clusters were scored and are presented as percentages of total cells analyzed. Numbers above bars indicate the total numbers of cells counted. Error bars represent standard deviations calculated from at least four independent experiments. Asterisks denote differences with statistical significance (P < 0.005) relative to the WT, as determined by the Student t test.
The multiple pYDXV motifs and SH3 domains of the nephrin tail are essential for actin polymerization, and our results indicate that multiple SH3 domains are required to induce actin polymerization, and our results indicate that multiple SH3 domains are essential in specific contexts; the difference may be in the distinct mechanisms employed for activation of the Nck SH3 domains (28). Our results are consistent with the binding profiles of the Nck SH3 domains, since the second and third SH3 domains associate with the majority of Nck targets implicated in cytoskeletal regulation (6, 23). For example, the SH3-2 and SH3-3 domains of Nck can both bind to N-WASP and the SH3-2 domain also binds WIP and PAK (1, 4, 29, 30). Potentially, the recruitment of either N-WASP or WIP is sufficient to form an N-WASP-WIP complex that induces actin polymerization (25).

Although a single nephrin YDXV motif or Nck SH3 domain is sufficient to induce actin polymerization in MEFs following nephrin clustering, a combination of a nephrin mutant with only one YDXV motif and an Nck mutant with only a single functional SH3 domain (SH3-2) is relatively inactive. This cooperative function of the multiple nephrin YDXV motifs and Nck SH3 domains could be explained if a high local concentration of Nck targets were being generated, and thus, a network of cross-linked effector proteins is important for potent actin polymerization induced by nephrin. SH3-mediated interactions could also affect the stability of the Nck-nephrin complex. For example, if two Nck molecules bind through their SH3 domains to the same effector molecule (such as the extended proline-rich region in N-WASP), the affinities of their SH2 domains for multiply phosphorylated nephrin could increase through an avidity effect, as occurs in vitro for Nck SH2 domains dimerized with GST.

The multiple pYDXV motifs and SH3 domains of the nephrin-Nck cluster could therefore enhance the oligomerization of effectors and also stabilize the nephrin-Nck complex. In podocytes, this may be important for converting initially weak signals at the developing and mature slit diaphragm into a strong and sustained actin response required to form and maintain foot processes and, thus, the filtration apparatus of the glomerulus in the kidney. The notion that multiple pTyr-SH2 domain interactions may cooperate at the slit diaphragm to
induce actin polymerization is supported by the finding that Nep1, a transmembrane protein that associates with nephrin, is tyrosine phosphorylated upon clustering and associates with the Grb2 adaptor (13). Co-clustering of nephrin with Nep1, which further increases the number of pTyr residues and SH3 domains present in the complex, induces levels of actin polymerization that are higher than those observed with either receptor alone, potentially by enhancing the link between nephrin and Nck effectors, such as N-WASP (13).

We have previously proposed that the EPEC Tir protein polymerizes actin at sites of bacterial attachment by mimicking this pYDXV-based nephrin signaling. In support of this no-
tion, we find that a 14-residue motif encompassing the Y$	extsuperscript{575}$DEV site from Tir will restore actin polymerizing activity to a nephrin mutant that lacks all three intrinsic YDXV motifs. Conversely, grafting a 14-amino-acid element containing the Y$	extsuperscript{157}$DV site from human nephrin onto a Tir Y$	extsuperscript{474}$F mutant restores the ability of EPEC to efficiently induce actin-based pedestals in infected cells. EPEC Tir may require only a single high-affinity Nck-binding site because of the very extensive clustering of Tir induced by the intimin protein on the bacterial surface. The acquisition of short signaling motifs that engage specific components of the intracellular machinery therefore represents a facile way in which pathogens can evolve to modify cellular behavior.

In combination, our data suggest that clustering of adhesion proteins and consequent pYDXV/Nck signaling, likely operating through the oligomerization of cytoplasmic effectors, are a portable and potent mechanism for physiological and pathological actin regulation.

ACKNOWLEDGMENTS

We are indebted to Karl Tryggvason for 50A9 antinephrin antibodies, Bruce Mayer for the original Nck1 SH3-1, SH3_2, SH3_3 construct, and Peter McPherson for the GFP-N-WASP construct. We thank Rick Bagshaw, Jerry Gish, Sarang Kulkarni, David Schibli, Neil Warner, and Chenggang Wu for technical assistance and Jerry Gish, Giselle Wiggin, and Rick Bagshaw for their help in preparing the manuscript. I.M.B. thanks G. Leung for her assistance, support, and insights.

Work in our laboratories was funded by the Canadian Institute for Health Research (CIHR) (to T.P., S.G., and S.S.C.L.) and Genome Canada (to S.S.C.L. and T.P.) with funds provided through the Ontario Genomics Institute, and the Kidney Foundation of Canada (to N.J.). S.E.Q. holds a Canadian Research Chair in Vascular and Metabolic Biology. S.S.C.L. holds a Canada Research Chair in Functional Genomics and Cellular Proteomics. S.G. holds a Canadian Research Chair in Bacterial Pathogenesis. N.J. is the recipient of a Natural Sciences and Engineering Research Council of Canada University Faculty Award. T.P. is a distinguished scientist of the CIHR.

REFERENCES

