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FIG 5 CDX2 is necessary for HNF4A to bind intestinal epithelial cell DNA at cooccupied regions. (A) Immunoblotting and immunohistochemical evidence that
HNFA4A levels are reduced, approximately by half, in Cdx2~/~ intestinal epithelium. (B) Four prominent CDX2 binding sites are observed in a 40-kb window at
the murine Hnf4a locus, suggesting direct effects on Hnf4a expression (P < 10~°). (C) Composite plots of ChIP-Seq data from WT and Cdx2 ™'~ intestinal cells,
showing HNF4A occupancy at all regions where HNF4A binds DNA without (left box) or with (right box) nearby CDX2 binding. Aggregate HNF4A binding to
DNA is reduced, probably owing to lower protein levels, and the compromise is substantially larger at sites cooccupied by CDX2 (right box). Dotted lines mark
the difference in average HNF4A peak heights in WT and Cdx2 '~ intestines. (D and E) Selective losses in HNF4A binding are shown at representative regions
containing both HNF4A-only and cooccupied sites (D, chromosome 19 position 11085000 to 11160000; E, chromosome 7 position 88720000 to 88856000). In
Cdx2~"~ cells, HNF4A occupancy is affected less or not at all at sites without CDX2 binding (arrowheads) and severely compromised at sites where both TFs
normally cooccupy DNA (arrows). (F) Statistical evidence (Mann-Whitney test) that changes in HNF4A binding in the absence of CDX2 are more severe at
cooccupied than at singly bound sites.
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FIG 6 CDX2loss adversely affects the active chromatin configuration at sites of HNF4A cooccupancy. (A to C) Nucleosomal H3K4me?2 profiles were determined
by ChIP-Seq of MNase-digested chromatin from WT and TF-depleted intestines. Aggregate plots of the ChIP-Seq signal are centered on the 1,657 sites that CDX2
and HNF4A cooccupy in WT mice and also carry the H3K4me2 mark of active enhancers. Loss of HNF4A did not affect the nucleosomal H3K4me2 profile (A),
whereas CDX2 loss prominently reduced H3K4me?2 signals (B). Additional loss of HNF4A did not further affect the H3K4me?2 profile of Cdx2 ™/~ tissue (C). (D)
Representative ChIP-Seq data from a region on chromosome 1. CDX2 loss compromised both chromatin structure and HNF4A binding, specifically at a
cooccupied site (bold dashed lines, asterisk), sparing the H3K4me2 mark where it appears without CDX2 binding (light dashed lines), both within and far from
a promoter. See also Fig. S2 in the supplemental material. (E) Frequency of HNF4A-CDX2 cooccupied sites in WT (purple) and of HNF4A binding sites in
Cdx2~'~ (black) intestinal cells plotted in relation to the nucleosome stabilization-destabilization (NSD) score, a measure of altered H3K4me2-marked
chromatin in Cdx2~/~ intestines. Regions with reduced chromatin access in the absence of CDX2, represented to the right, correspond to those that CDX2 and
HNFA4A cooccupy in WT intestines. Regions that are unchanged (center) or have become more accessible in Cdx2~'~ gut, represented to the left, show no
correlation with CDX2 and HNF4A binding. (F and G) Changes in nucleosomal H3K4me2 configuration at the 1,657 cooccupied regions were plotted against
the corresponding change in binding of CDX2 or HNF4A in mouse intestines lacking the other TF. Hnf4a-null intestine (F) showed little change in CDX2
occupancy (y axis) or chromatin configuration (x axis), whereas active chromatin and HNF4A binding were proportionately compromised in Cdx2~'~ intestine
(G). Thus, CDX2 protects active chromatin at hundreds of regions, and HNF4A binding is preferentially diminished in the regions of highest chromatin effect
in Cdx2™'" intestines.

DISCUSSION

Some TFs are expressed briefly during development and impart
competence for tissue-restricted transcriptional programs. Such
TFs operationally resemble pioneer factors, which specify cell lin-
eages but seem to have a limited role in maintaining stable cellular
or chromatin states beyond development (4). Instead, transcrip-
tion-permissive chromatin at cell-specific cis-regulatory modules
in adult tissues is thought to reflect the cooperative activity of
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multiple TFs, with no single factor dominating materially over
others that occupy the same enhancer (4-7). In an important
sense, however, the well-studied examples that support this view
are not easily reconciled with the seemingly dominant biological
activities of lineage-specifying TFs. Such tissue-restricted factors
are classically exemplified by myogenic and hematopoietic TFs (9,
11) but are also recognized in most other tissues; they often help
specify a cell lineage during development and maintain the same
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FIG 7 CDX1 and CDX2 jointly maintain the chromatin state at thousands of intestinal enhancers, beyond those occupied by HNF4A. (A and B) Aggregate plots
of enhancer H3K4me2 profiles in mutant intestines at CDX2-bound regions that lack HNF4A binding. The H3K4me2 mark on positioned nucleosomes flanking
CDX2 occupancy is considerably depleted in Cdx2~'~ (A) and further compromised in CdxI1~'~; Cdx2~'~ (B) intestinal cells, revealing a profound requirement
for Caudal family proteins in maintaining active chromatin in the adult gut. (C) A representative genomic region (chromosome 18 position 32187000 to
32215000) containing Myo7b illustrates progressive reduction in the H3K4me2 mark upon loss of CDX proteins. This is evident at regions that flank CDX2
binding sites both upstream and downstream (regions bracketed by dotted lines) of the TSS, whereas H3K4me2 levels at the Myo7b promoter (arrow) are
unaffected. (D) Distributions of the magnitude of changes in H3K4me2-marked chromatin following CDX2 loss. Sites that bind CDX2 without HNF4A are
affected as much by CDX2 loss as those that CDX2 and HNF4 cooccupy; both classes of binding regions suffer compared to regions where neither TF binds DNA.
(E) CDX2 effects on chromatin are local rather than global. Regions that normally contain positioned H3K4me2-marked nucleosome pairs but do not bind
CDX2 or HNF4A show a normal distribution of changes after CDX2 loss (gray histogram). Although most areas of the genome were unchanged and chromatin
was marked more strongly at many sites (NSD of >0), regions that bind CDX2 in WT intestines (red shading) had the most severely affected chromatin in
Cdx1~'~; Cdx2~'~ intestinal cells. The difference in distributions of the two histograms has a P value of 2.67 X 10~'°° by the two-sample ¢ test.

cell type in adults. CDX2 represents this class of master regulator
TFs in the intestine because it induces an intestine-specific tran-
scriptional program in heterologous stomach cells in vivo (15, 49),
specifies the developing intestine (14), and maintains adult intes-
tinal integrity and function (16-18). Recent work highlights the
additional activity of master regulator TFs in tailoring tissue-spe-
cific transcriptional programs in response to ubiquitous intercel-
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lular signals such as Wnt and transforming growth factor 3
(TGF-B) (12, 13, 50).

Together, the powerful biological activities of lineage specifi-
cation, cell maintenance, and cell-specific response suggest the
possibility of a dominant role for such proteins within TF hierar-
chies. However, it is unclear how that role is enacted at the level of
regulatory cis elements, nor has a role been demonstrated unam-
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biguously with respect to chromatin and other TFs in mammalian
cells in vivo. Our results reveal a cardinal requirement for CDX2 in
maintaining enhancer chromatin in an active form at thousands
of sites in the genome of adult mouse intestinal cells. CDX2 pro-
tects or provides the active H3K4me2-marked chromatin config-
uration near most of its TSS-distal binding sites that show en-
hancer properties. Furthermore, nearby HNF4A binding, present
at about one in four such sites, is markedly compromised when
the H3K4me2 mark is attenuated in the absence of CDX2.
Whereas the Saccharomyces cerevisiae PHOS5 promoter offered a
precedent for a similar TF function in enabling chromatin access
(51, 52), our study reveals the genome-wide activity of a lineage-
specifying TF in a mammalian tissue in vivo.

Loss of CDX2’s companion factor HNF4A did not materially
affect nucleosomal H3K4me2 marks at thousands of sites where it
occupies DNA, regardless of nearby CDX2 binding. Rather, our
data reveal a hierarchy in which CDX2 governs access of other TFs
by controlling enhancer chromatin structure. Through this pow-
erful effect on chromatin, which we observed at the majority of
CDX2-bound sites in intestinal villus epithelial cells, CDX2 might
also enable TFs other than HNF4A to access DNA. However, our
experiments do not address if CDX2 only maintains permissive
chromatin or is also responsible for initiating chromatin access in
nascent epithelial cells or in the embryonic gut, i.e., whether it
behaves as a bona fide pioneer factor. This is an important topic
for future investigation, together with the question of whether
CDX2 controls chromatin in a manner similar to the yeast PHO5
promoter (51, 52) or through mechanisms that may be unique to
complex mammalian enhancers. Most importantly, CDX2’s pro-
found role in preserving enhancer activity in an adult organ in vivo
suggests that master regulators of other cell lineages may control
tissue-specific genes by similarly maintaining chromatin in an ac-
tive configuration at distant, lineage-restricted enhancers.
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ERRATUM

Erratum for Verzi et al., Intestinal Master Transcription Factor CDX2
Controls Chromatin Access for Partner Transcription Factor Binding

Michael P. Verzi,®P° Hyunjin Shin,® Adrianna K. San Roman,®® X. Shirley Liu,¥ Ramesh A. Shivdasani®®

Department of Medical Oncology® and Department of Biostatistics and Computational Biology,® Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Departments
of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA®; Department of Genetics, Rutgers, The State University of New
Jersey, New Brunswick, New Jersey, USAS; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA®

Volume 33, no. 2, p. 281-292, 2013. Page 282, column 1, line 23 of Materials and Methods: “6547” should read “6556.”

Citation Verzi MP, Shin H, San Roman AK; Liu XS, Shivdasani RA. 2015. Erratum for
Verzi et al,, Intestinal master transcription factor CDX2 controls chromatin access
for partner transcription factor binding. Mol Cell Biol 35:496 -496.
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