




FIG 6 vSMC signaling dysfunctions require cross talk with downstream vasopressor mechanisms for hypertension development. (A to E) Evolution of the amount of
plasma choline (A), serotonin (B), AngII (C), noradrenaline (D), and adrenaline (E) in Myh11-Rac1flox/flox mice upon the final injections with either oil or tamoxifen.
This time point was considered 0. The periods associated with hypertension conditions (see the legend to Fig. 2D) are indicated as shaded areas in all panels. P � 0.05 (*)
and P � 0.001 (***) compared to oil-injected mice (n � 4). (F) Evolution of the heart rates in the same animals and experimental conditions. Periods of hypertension
are indicated. P � 0.05 (*) and P � 0.01 (**) compared to oil-injected mice (n � 4). (G) Plasma glucose concentration upon glucose injection in mice 2 (left) and 3 (right)
months after final injections with either oil or tamoxifen (n � 4 and 5 for oil- and tamoxifen-treated mice, respectively). (H) Representative images of hematoxylin-
eosin-stained sections from the indicated tissues (left) derived from 4-month-old Myh11-Rac1flox/flox mice 3 months after either the oil or tamoxifen injections (top).
Scale bars, 100 �m. No signs of steatosis (top) or hypertrophy of white (middle) or brown (bottom) adipocytes are seen (n � 4 and 5 for oil- and tamoxifen-treated mice,
respectively). (I) Abundance of the indicated mRNAs typically associated with hepatic steatosis in livers obtained from 4-month-old mice treated as described for panel
G (n � 4 and 5 for oil- and tamoxifen-treated mice, respectively). Error bars represent the SEM.
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Possible candidates include ArhGEF7 and Kalirin, since these ex-
change factors promote the proliferation and migration of vSMC
in vitro and, in the case of Kalirin, neointima formation in vivo (44,
45). Our results suggest that Vav3 also can represent a good can-
didate for this regulatory step (Fig. 5H). Unfortunately, we could
not verify this possibility, because all Vav3�/� mice used in neo-
intima experiments died shortly after the ligation step of the
carotid (M. A. Sevilla, S. Fabbiano, M. J. Montero, and X. R. Bus-
telo, unpublished data). The cause for this mortality is unknown,

although it may be due to the chronic sympathoexcitation present
in these mice (18, 34).

The inducible nature of some of the mouse models used in this
study also has allowed us to recapitulate, in a genetically and phys-
iological “clean” manner, the alterations that take place at the
organism level upon a single vascular tone-related signaling defect
in vSMCs. We have observed that such alterations include, among
others, the progressive stimulation of both the renin-AngII and
sympathetic nervous systems (Fig. 7A). The combined activation

FIG 7 Renin-angiotensin II and sympathetic systems are required to maintain the hypertension of Myh11-Rac1flox/flox mice. (A) Summary of the evolution of
indicated physiological parameters and regulatory molecules (left) in Myh11-Rac1flox/flox mice upon the tamoxifen-induced recombination step in the Rac1 locus
(data are derived from those shown in Fig. 6). Upregulated (red boxes on basal lane) and downregulated (blue boxes underneath basal lane) responses are
indicated. The time after the recombination step is indicated at the top. Effects induced by the indicated drug treatments on either tamoxifen-treated Myh11-
Rac1flox/flox (Capt column) or wild-type (AngII, AngII�ARI, and Atr columns) mice are also shown (see the box on the right for other symbols used in this panel).
Capt, captopril; ARI, adrenergic receptor inhibitors; Atr, atropine; N.D., not determined. (B) Evolution of mean arterial pressure of tamoxifen-treated Myh11-
Rac1flox/flox mice upon the indicated drug treatments. A shaded area indicates the time of administration of each drug. As a control, we included the mean arterial
pressure of control, oil-injected Myh11-Rac1flox/flox mice. P � 0.05 (*), P � 0.01 (**), and P � 0.001 (***) relative to oil-injected mice at the indicated
experimental time points (n � 4). (C, left) Mean arterial pressure of Myh11-Rac1flox/flox mice that, 4 weeks after the injections with tamoxifen, were treated with
the indicated drugs for 1 week. (Right) Mean arterial pressure of Myh11-Rac1flox/flox mice treated with the indicated treatments before and after being injected
with either oil or tamoxifen. Recordings were done 1 week after the indicated injections. In both cases, we include for comparison the arterial pressure values of
control mice simply injected with oil. Sild, sildenafil; Prop, propranolol. **, P � 0.01 relative to oil-injected mice (n � 4). Error bars represent the SEM.

TABLE 1 Effect of indicated treatments on Myh-Rac1flox/flox and wild-type C57BL/10 mice

Parameter

Value according to mouse strain and treatmenta

Myh11-Rac1flox/flox C57BL/10

Oil Tamoxifen
Tamoxifen and
captopril Control AngII

AngII, Prop, and
Doxab Atropine

M.A.P. (mmHg) 74 � 2 87 � 3* 72 � 2# 78 � 4 112 � 3* 116 � 4* 97 � 2*
Heart rate (bpm) 603 � 12 709 � 18* 570 � 9# 594 � 11 697 � 38* 712 � 24* 722 � 15*
AngII (pg/ml) 30 � 1 97 � 5* ND 32 � 3 ND ND 39 � 5
Choline (nmol/�l) 0.032 � 0.01 0.026 � 0.00* 0.036 � 0.00# 0.034 � 0.00 0.024 � 0.00* 0.023 � 0.00* 0.028 � 0.01
Noradrenaline (nM) 0.88 � 0.12 1.48 � 0.14* 0.66 � 0.05# 0.62 � 0.12 1.72 � 0.22* 1.54 � 0.3* 0.67 � 0.12
a See Materials and Methods for details about treatments performed. *, P � 0.05 compared to the appropriate untreated control; #, P � 0.05 compared to tamoxifen-treated mice.
ND, not determined.
b Prop, propranolol; Doxa, doxazosine.
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of these two systems probably favors the evasion of the renal pres-
sure-natriuresis mechanism that ensures the long-term arterial
pressure homeostasis and, subsequently, the aggravation of the
hypertensive state through the cardiac-, vasopressor-, and vascu-
lar remodeling-mediated increase in peripheral arterial resistance
(46). These two systems become activated very early upon Rac1
deletion, because captopril and propranolol can halt the develop-
ment of hypertension even when administered prior to the gene
recombination event and during short postrecombination peri-
ods in which AngII and catecholamines have not yet reached sys-
temic levels in plasma. We have also found a very early reduction
of parasympathetic activity that contributes to the early tachy-
cardic response seen right after the Rac1 depletion in vSMCs and,
in addition, to the increased vasoconstriction present in these
mice (Fig. 7A). The latter response is probably a physiological
adaptation to elevated blood pressure conditions, since it also has
been observed both in the neurogenic hypertension conditions
exhibited by Vav3�/� mice (26) and during the systemic admin-
istration of AngII to wild-type mice (Table 1). Taken together, our
results indicate that the local dysfunction of Vav2 and Rac1 sig-
naling in vSMCs elicits a butterfly effect that eventually leads to the
generation of a general prohypertensive pathophysiological status
in animals. In contrast, we observed that mice depleted of Rac1 in
vSMCs do not develop type 2 diabetes even after long periods of
chronic hypertension and high AngII levels in plasma. This is in-
triguing, because multiple clinical studies have shown associations
between the development of this disease and the presence of either
chronic vasoconstriction or systemic AngII conditions (36, 37). It
has been argued that such linkages are due to direct effects of the
above-described cardiovascular parameters on insulin responses.
Proposed models include negative effects induced by vasocon-
striction itself in the availability of both glucose and insulin in
peripheral tissues, intrinsic signaling effects of AngII in pancreatic
cells, and negative influences of AngII-stimulated pathways on
insulin receptor downstream signaling elements in a number of
cell types (36, 37). However, other studies favor the concept that
such association reflects an ancillary function of those cardiovas-
cular parameters in individuals that are already predisposed to
develop type 2 diabetes (37). Answering this issue has been diffi-
cult so far in humans given the multiple gender, ethnic, metabolic,
and lifestyle variables involved in the development of all of these
diseases. Our results tilt the balance in favor of the latter model,
since they suggest that chronic hypertension and high AngII con-
ditions are not sufficient per se to trigger glucose tolerance or type
2 diabetes in the absence of such a genetic predisposition, at least
in the case of mice.

The present results also suggest that the pharmacological inhi-
bition of Rac1 will lead to the inexorable development of hyper-
tension and its typical comorbidities. This observation is particu-
larly important given the intensive efforts that currently are being
made to isolate specific inhibitors for exchange factors, exchange
factor-Rac1 interactions, and the catalytic activity of p21-acti-
vated kinase family members to treat cancer patients (47, 48).
However, our results also indicate that these side effects will be
readily eliminated upon the removal of those therapies or, perhaps
more importantly, fully prevented when using them in combina-
tion with standard antihypertension treatments already utilized in
clinical practice.
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