






HiSeq2500 system. Quality of the RNA sequencing (RNA-seq) data was
thoroughly examined at multiple stages of data processing, as outlined
previously (25). Raw data and alignment quality control were performed
by using QC3 (26), and expression analysis was carried out by using
MultiRankSeq (27). Raw data were aligned with TopHat 2 (28) against the
human HG19 reference genome. Gene and intron expression levels were
quantified and normalized into fragments per kilobase of transcript per
million reads (FPKM) by using Cufflinks (29). Differential gene expres-
sion was performed by using Cufflinks with a false discovery rate (FDR) of
�0.05 to correct for multiple testing. Intron fold change levels were de-
termined after adjusting for overall expression. Gene ontology analysis
was performed by utilizing GORILLA (30, 31).

RESULTS
ERH deficiency results in DNA damage and inefficient restart of
replication following replication stress. A whole-genome siRNA
screen to discover proteins that function in the replication stress
response identified ERH as a protein of interest. Briefly, U2OS
cells transfected with siRNA were treated with HU for 24 h and
allowed to recover in the presence of EdU for 4 h (Fig. 1A). The
samples were then examined by immunofluorescence to detect
�H2AX and EdU intensity levels as measures of DNA damage and
replication restart. As a control, cells depleted for ATR exhibited a
high level of �H2AX and a low level of EdU incorporation com-
pared to those of nontargeting (NT) controls (Fig. 1B), reflecting
fork collapse in ATR-deficient cells (22, 32). A complete data set
from the screen will be reported elsewhere. ERH was one of the
genes for which four of four siRNAs tested caused increased
�H2AX and decreased EdU incorporation compared to those of
nontargeting controls, indicating that it may function in the rep-
lication stress response (Fig. 1B and C).

To further characterize how ERH depletion affected replication
recovery following a replication stress challenge, cells were arrested by
treatment with HU for 20 h and then released into nocodazole to
prevent cells from progressing past mitosis. Cells transfected with
nontargeting siRNA progressed completely through S phase 10 h af-
ter removal of HU, while cells transfected with ERH siRNAs exhibited
reduced progression through S phase (Fig. 1D).

ERH-deficient cells also exhibited hypersensitivity to the rep-
lication stress-inducing agents HU, gemcitabine, and camptoth-
ecin (Fig. 1E to G). Knockdown of ERH was confirmed by immu-
noblotting (Fig. 1H). These data confirm that ERH is necessary for
recovery from an acute replication stress challenge.

ERH function is important for DNA replication and genome
stability even in the absence of exogenous damaging agents. Si-
lencing of ERH, even in otherwise untreated cells, resulted in in-
creased levels of �H2AX compared to those in nontargeting con-
trols (Fig. 2A), indicating that ERH is also important for the
maintenance of genomic stability in the absence of exogenous
sources of replication stress.

To better understand its function in the absence of exogenous
DNA-damaging agents, we examined replication in ERH-de-
pleted cells utilizing a DNA fiber labeling assay. Cells were labeled
with IdU, followed by a labeling period with CldU, to allow the
incorporation of these nucleoside analogs into newly synthesized
DNA. DNA fibers were visualized by immunofluorescence, and
the lengths of each label were measured to determine the amount
of incorporation (Fig. 2B). ERH depletion resulted in reductions
in fiber lengths of both IdU and CldU compared to those in non-
targeting siRNA controls, indicating a problem in replication
elongation (Fig. 2C). Thus, ERH is necessary for proper DNA

replication in the absence of exogenous damage in addition to
recovery following an acute replication stress challenge.

ERH is important for ATR signaling but is not observed at
sites of replication or DNA damage. The phenotypes associated
with a loss of ERH function mimic those caused by an inhibition
of the ATR pathway. Thus, we assessed whether the loss of ERH
alters ATR signaling. To measure ATR pathway activation, control
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FIG 2 ERH is important for DNA replication and genome stability in the
absence of exogenous stress. (A) U2OS cells were transfected with nontarget-
ing and ERH siRNAs and fixed, and �H2AX levels were determined by immu-
nofluorescence. (**** denotes a P value of �0.0001.) (B and C) Cells were
transfected as described above for panel A and labeled with IdU for 20 min,
followed by labeling with CldU for 20 min. Cells were collected and permeab-
ilized, and DNA was spread onto glass slides. Immunofluorescence images
were collected (B), and DNA fiber lengths were quantitated (C). The means of
data from three replicate experiments are represented.
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and ERH-depleted cells were treated with HU, and CHK1 phos-
phorylation levels were examined. CHK1 phosphorylation was
reduced in ERH-deficient cells compared to that in nontargeting
controls (Fig. 3A). We also noted a reduction in total CHK1 levels
in these cells.

Since our data indicate that ERH is necessary for recovery fol-
lowing HU arrest and is important for ATR pathway signaling, we
sought to determine whether ERH localized to sites of DNA rep-
lication or stalled replication forks. ERH did not colocalize with
either RPA or �H2AX foci in untreated cells or cells treated with
either HU or ionizing radiation (Fig. 3B and C). We also did not
observe ERH recruitment to sites of DNA damage caused by mi-
croirradiation (Fig. 3D). Additionally, ERH localization at repli-
cation forks was not detected by the isolation of proteins on nas-
cent DNA (iPOND) method in �30 experiments analyzed by
both immunoblotting and mass spectrometry (33, 34) (data not
shown). Since ERH does not localize to replication forks or sites of
damage, ERH may affect replication and replication stress re-
sponses indirectly.

ERH interacts with RNA processing proteins. To better un-
derstand the mechanism of action of ERH in the replication stress
response, we sought to identify proteins that interact with ERH
using mass spectrometry. ERH protein complexes were purified
from nuclear extracts of HEK293T cells. Highly abundant non-
specific proteins detected in both nontargeting control and ERH
samples, such as tubulin, filamin, and spectrin, were excluded as
interacting partners. All ERH-interacting proteins detected with
substantially higher peptide counts than those in the controls are

depicted in Fig. 4A. Several proteins previously reported to inter-
act with ERH were detected. These proteins include CIZ1 and
POLDIP3/SKAR, which were identified by yeast two-hybrid as-
says (14, 15), and CHTOP, POLDIP3/SKAR, BCLAF1, and
PRMT1, which were previously detected in unbiased screens for
mitotic protein complexes (35). Our data set also identified
interactions with THRAP3, DGCR8, DROSHA, C1QBP, and
FAM208B (Fig. 4A). Most of these ERH-interacting proteins are
linked to RNA processing. BCLAF1, THRAP3, C1QBP, CHTOP,
and POLDIP3 were previously associated with mRNA splicing or
processing (36–43), and the microprocessor complex proteins
DGCR8 and DROSHA function in microRNA (miRNA) biogen-
esis (44–48). We confirmed the interactions of ERH with
THRAP3, DGCR8, CHTOP, and PRMT1 by standard coimmu-
noprecipitation (Fig. 4B). Treatment of extracts with RNase A did
not disrupt the interaction of ERH with any of the proteins, sug-
gesting direct protein-protein interactions (Fig. 4B).

ATR expression levels are reduced as a result of ERH deple-
tion. Because ERH interacted with RNA processing proteins, we
next examined whether ERH loss altered the expression of ATR
pathway proteins. Both ATR protein and mRNA levels were di-
minished in comparison to those in nontargeting controls (Fig.
5A and B). Additionally, protein levels of several other replication
and DNA damage response proteins (ATRIP, TOPBP1, RAD50,
and MRE11) and mRNA levels of RAD50 were reduced upon ERH
knockdown (Fig. 5A and B). Not all replication and DNA damage
proteins are affected by ERH loss, however, as RAD9, RPA32, and
KU70 levels remained unchanged. In contrast to the reduction in
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FIG 3 ERH affects ATR pathway signaling, although it is not observed at sites of replication stress. (A) U2OS cells transfected with nontargeting and ERH siRNAs
were treated with 2 mM and 3 mM HU for 2 and 4 h; cells were lysed; and protein levels of pCHK1, total CHK1, ERH, and GAPDH were examined by immunoblot
analysis. A representative blot of three replicate experiments is depicted. (B and C) U2OS cells stably expressing GFP-tagged ERH were treated with 2 mM HU
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ATRIP protein levels, ATRIP mRNA levels were increased in
ERH-depleted cells. This observation is likely explained by the
reduced ATRIP protein stability when ATR is absent (49). No
change in CHK1 mRNA levels was observed with ERH depletion
(Fig. 5B). We noted that one ERH siRNA (siRNA 3) caused a slight
reduction of CHK1 protein levels (Fig. 3A), but since this was not
observed with other ERH siRNAs, it may be an off-target effect or
due to differences in knockdown efficiency.

To assess whether reduced ATR protein levels resulted in less
ATR bound to chromatin, chromatin fractionation samples were
analyzed. As expected, ATR levels in nuclear soluble fractions were
reduced in both untreated and HU-treated ERH-deficient cells
compared to those in control cells (Fig. 5C, left). Similar levels of
ATR were observed in the chromatin fractions of untreated con-

trol and ERH-deficient cells. While nontargeting siRNA controls
exhibited increased ATR levels on chromatin with HU treatment,
ATR levels in ERH-depleted samples were not increased (Fig. 5C,
right). These data indicate that reduced ATR protein levels in
ERH-deficient cells result in less ATR localization to chromatin
following replication stress.

ATR mRNA is inefficiently spliced in ERH-depleted cells. As
our mass spectrometry data indicated that ERH interacted with
multiple RNA processing enzymes, and we observed reduced pro-
tein and mRNA expression of ATR as well as other damage re-
sponse proteins, we examined specifically how ERH depletion af-
fects ATR mRNA. U2OS cells transfected with nontargeting or
ERH siRNA were treated with the transcriptional inhibitor acti-
nomycin D for up to 24 h to examine the effect of ERH loss on the
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stability of ATR mRNA. ATR mRNA levels were substantially
lower in ERH-depleted cells, as expected (Fig. 6A). However, no
reduction of ATR mRNA stability was observed compared to that
in control cells (Fig. 6A). The remaining ATR mRNA population
in ERH-depleted cells actually appeared to be more stable.

We next examined the effect of ERH loss on mRNA splicing.
Spliced and prespliced ATR mRNA levels were evaluated by qPCR
using primers designed for multiple exon junctions throughout
the gene. Three sets of primers were utilized per junction: one
exon/exon set, to detect spliced mRNA, and one exon/intron set
and one intron/exon set, to detect prespliced mRNA (Fig. 6B).
Cells with deficient mRNA splicing mechanisms should exhibit
higher levels of prespliced RNA detected by primers at exon/in-
tron boundaries and decreased levels of mature mRNA detected
by exon/exon boundary primers. At all five ATR exon junctions
examined, spliced mRNA levels were reduced in ERH-depleted
cells (Fig. 6C). In contrast, prespliced RNA levels were increased at
four of the five junctions (Fig. 6C). (The asterisks in Fig. 6C denote
junctions where qPCR was not successful. Multiple primer pairs
were tested; however, PCR primers that provide quantifiable data

across the junctions were not identified.) Three KU70 exon junc-
tions were also examined as a negative control because the KU70
protein expression level was unchanged upon the loss of ERH
(Fig. 5A). Both prespliced and spliced KU70 mRNA levels showed
no appreciable difference between nontargeting control and ERH
samples (Fig. 6C). Collectively, these data indicate that ERH is
important for the efficient splicing of ATR mRNA. These results
suggest that the defects in ATR signaling, replication, and the rep-
lication stress response in ERH-deficient cells may be due primar-
ily to defects in the processing of ATR pathway mRNAs, leading to
reductions in the expression levels of multiple ATR pathway pro-
teins.

Global effect of ERH deficiency on gene expression and RNA
splicing. To determine whether ERH specifically affects the splic-
ing of ATR pathway genes or is part of a broader regulatory pro-
gram, RNA sequencing (RNA-seq) analysis was performed to
globally examine the effect of ERH loss on gene expression and
mRNA splicing. In ERH-deficient cells, gene expression analysis
revealed that the expression levels of 1,611 genes were significantly
decreased and that those of 1,990 genes were significantly in-
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FIG 5 ATR levels are reduced in ERH-deficient cells. (A) U2OS cells expressing nontargeting and ERH siRNAs were collected at 72 h posttransfection and lysed,
and immunoblot analysis was performed for the indicated proteins. Data from a representative experiment are shown, but quantitative immunoblotting
demonstrated statistically significant decreases in the levels of ATR, RAD50, TOPBP1, ATRIP, and MRE11 in ERH-depleted cells. (B) Cells were transfected with
siRNA as indicated, total RNA was extracted and reverse transcribed into cDNA, and qPCR was performed to analyze the fold differences of mRNA levels in
ERH-depleted cells compared to those of nontargeting controls. (* denotes a P value of �0.05. ** denotes a P value of �0.01.) (C) Cells were transfected with
siRNA as indicated, and ATR levels in nuclear soluble and chromatin fractions were examined by immunoblotting. ORC2 is included as a loading control for
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creased compared to the levels in control cells (see Table S1 in the
supplemental material). As anticipated, ATR levels were signifi-
cantly reduced in ERH-depleted cells (P value of 0.04). Genes
exhibiting significantly reduced expression in ERH-depleted cells
were enriched for nuclear processes, including DNA replication,
DNA metabolism, the cell cycle, chromatin assembly and organi-
zation, and chromosome organization and segregation (Table 1;
see also Table S1 in the supplemental material). Reduced levels of
genes involved in these important nuclear pathways likely account
for the decreased replication and repair rates observed following
replication stress in ERH-depleted cells. Genes with increased lev-
els in ERH-deficient cells were found to function in signal trans-
duction, proliferation, cell death, development, extracellular ma-
trix organization, cell adhesion and motility, protein processing,
proteolysis, and several biosynthesis pathways (Table 1; see also
Table S1 in the supplemental material). Some of these transcript
level changes may be secondary effects. Nonetheless, these data
indicate that ERH contributes to DNA replication and the repli-
cation stress response by ensuring proper expression of genes in-
volved in these processes.

To determine the effect of ERH loss on mRNA splicing, we
calculated the fold changes of intron levels adjusted for overall
gene expression between ERH-deficient and control samples.

Genes exhibiting a change of 1.5-fold or higher in ERH-depleted
cells were selected as being indicative of RNA splicing defects. As
expected, this analysis indicated a defect in ATR splicing in ERH-
deficient cells (1.56-fold change) (see Table S2 in the supplemen-
tal material). CENPE, which is also defectively spliced in ERH-
deficient cells (17), exhibited a 1.87-fold change. Of genes with
FPKM values greater than 1, 749 (5.4%) exhibited evidence of
defective splicing, indicating some level of specificity (see Table S2
in the supplemental material). This relatively small percentage
indicates that ERH is not a general splicing factor but regulates
only a subset of transcripts. Indeed, gene ontology analysis of
genes displaying increased intron levels in ERH-depleted cells
showed enrichment in a number of nuclear processes, including
nucleosome assembly and organization, DNA replication-depen-
dent nucleosome assembly and organization, DNA modification,
gene silencing, and DNA recombination (Table 2). Among repli-
cation and replication stress genes, defective splicing was evident
for ATR, POLA1, MSH2, and FANCM transcripts.

DISCUSSION

We identified ERH by a whole-genome RNAi screen designed to
find genes that function in the replication stress response. ERH
deficiency causes reduced DNA replication restart from an acute
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replication stress challenge and persistent levels of DNA damage.
Cells lacking ERH do not complete DNA replication after release
from a replication block. They are also hypersensitive to replica-
tion stress-inducing agents, including HU, camptothecin, and
gemcitabine. These data are consistent with the observations of
Krzyzanowski et al. (16), who reported that Schizosaccharomyces
pombe auxotrophic erh1� mutants are hypersensitive to stress
agents, including HU.

ERH loss causes increased DNA damage in both the pres-
ence and absence of exogenous stress. Furthermore, ERH-de-
ficient cells exhibit slowed elongation of DNA replication
forks. Thus, ERH function is also important to maintain ge-
nome integrity in cells even without the addition of an acute
replication stress challenge.

In the absence of ERH expression, we observed reduced
levels of phosphorylated CHK1, indicating that the ATR path-
way is compromised. We did not observe colocalization of ERH
with RPA or �H2AX foci following HU and IR treatment, lo-
calization to laser-induced DNA damage, or localization at
replication forks by iPOND analysis. These data are in contrast
to a previously reported observation that overexpressed ERH-
enhanced GFP (EGFP) colocalizes with overexpressed Ciz1-
mCherry, which was reported to be located at sites of DNA
replication (15). While we cannot exclude the possibility that
ERH localizes directly to sites of DNA replication under some
conditions, our analysis suggests an indirect function of ERH
in the replication stress response.

Indeed, we found that ERH complexes with multiple RNA pro-
cessing proteins. These include proteins involved in RNA splicing

TABLE 1 Gene ontology analysis of biological processes enriched in
genes exhibiting decreased and increased expression levels with ERH
knockdown in comparison to nontargeting siRNA controls

Biological process
No. of
genes P value q value

Decreased expression
Cell cycle process 125 5.41 	 10
43 7.26 	 10
39

Chromosome
organization

49 1.49 	 10
23 2.22 	 10
20

Cell division 49 7.09 	 10
19 9.53 	 10
16

Chromatin assembly or
disassembly

24 2.27 	 10
16 1.79 	 10
13

DNA metabolic process 67 1.07 	 10
15 7.55 	 10
13

Chromatin organization 62 2.68 	 10
15 1.71 	 10
12

Microtubule-based
process

50 5.58 	 10
15 3.4 	 10
12

Nuclear division 38 8.89 	 10
14 4.42 	 10
11

Chromosome segregation 22 4.87 	 10
14 2.51 	 10
11

Protein complex assembly 74 9.44 	 10
14 4.53 	 10
11

Spindle organization 20 4.52 	 10
13 1.9 	 10
10

Organelle fission 38 1.46 	 10
12 5.92 	 10
10

Macromolecular complex
assembly

78 2.07 	 10
11 6.19 	 10
9

Cell cycle checkpoint 23 6.25 	 10
10 1.38 	 10
7

Sister chromatid
segregation

10 1.09 	 10
9 2.28 	 10
7

DNA conformation
change

18 2.08 	 10
9 4.17 	 10
7

Regulation of organelle
organization

67 1.14 	 10
8 1.94 	 10
6

DNA repair 36 3.34 	 10
8 5.34 	 10
6

DNA replication 16 7.7 	 10
5 6.08 	 10
3

Increased expression
Regulation of intracellular

signal transduction
87 1.3 	 10
9 1.75 	 10
5

Regulation of cell death 88 4.18 	 10
8 7.02 	 10
5

Regulation of cell
proliferation

86 4.44 	 10
8 5.97 	 10
5

Positive regulation of
signaling

83 1.73 	 10
7 1.66 	 10
4

Extracellular matrix
organization

33 2.53 	 10
7 2.12 	 10
4

Cell adhesion 64 3.63 	 10
7 2.21 	 10
4

Cell motility 54 3.76 	 10
7 2.1 	 10
4

Positive regulation of cell
communication

82 4.47 	 10
7 2.22 	 10
4

Regulation of hydrolase
activity

70 2.59 	 10
6 9.4 	 10
4

Regulation of protein
metabolic process

115 3.35 	 10
6 1.07 	 10
3

Glycosaminoglycan
biosynthetic process

14 9.11 	 10
6 2.45 	 10
3

Aminoglycan biosynthetic
process

14 1.02 	 10
5 2.69 	 10
3

Positive regulation of
response to stimulus

92 1.35 	 10
5 3.12 	 10
3

Regulation of proteolysis 45 7.08 	 10
5 9.41 	 10
3

Epithelium development 20 8.99 	 10
5 1.14 	 10
2

Tissue development 39 1.07 	 10
4 1.28 	 10
2

Regulation of cellular
component movement

40 1.24 	 10
4 1.43 	 10
2

Chemotaxis 20 7.57 	 10
4 5.01 	 10
2

TABLE 2 Gene ontology analysis of biological processes enriched in
genes exhibiting defective mRNA splicing in ERH-deficient cells in
comparison to nontargeting controls

Biological process
No. of
genes P value q value

Nucleosome assembly 20 5.4 	 10
9 6.57 	 10
5

Protein heterotetramerization 10 2.4 	 10
8 1.46 	 10
4

Protein-DNA complex assembly 21 2.96 	 10
8 1.2 	 10
4

Nucleosome organization 21 6.05 	 10
8 1.84 	 10
4

Chromatin silencing at ribosomal DNA 10 1.16 	 10
7 2.82 	 10
4

DNA replication-dependent
nucleosome organization

9 1.31 	 10
7 2.65 	 10
4

DNA replication-dependent
nucleosome assembly

9 1.31 	 10
7 2.27 	 10
4

DNA methylation 12 1.02 	 10
6 1.24 	 10
3

DNA alkylation 12 1.02 	 10
6 1.13 	 10
3

Chromatin silencing 10 1.87 	 10
5 1.75 	 10
2

DNA modification 13 4.6 	 10
5 3.73 	 10
2

Methylation 27 1.38 	 10
4 9.29 	 10
2

Chromatin assembly or disassembly 12 2.29 	 10
4 1.46 	 10
1

Gene silencing 12 2.62 	 10
4 1.59 	 10
1

Protein heterooligomerization 12 2.99 	 10
4 1.65 	 10
1

Negative regulation of hematopoietic
progenitor cell differentiation

5 3.13 	 10
4 1.66 	 10
1

Regulation of response to external
stimulus

40 4.29 	 10
4 2.17 	 10
1

Reciprocal meiotic recombination 6 6.42 	 10
4 3 	 10
1

Reciprocal DNA recombination 6 6.42 	 10
4 2.89 	 10
1

Regulation of megakaryocyte
differentiation

5 9.36 	 10
4 4.06 	 10
1
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and processing, such as THRAP3, BCLAF1, C1QBP, CHTOP, and
POLDIP3, and proteins involved in miRNA biogenesis, such as
DROSHA and DGCR8 (36–48). Consistent with a function of
ERH in RNA processing, we observed defective splicing of ATR
mRNA in ERH-deficient cells, leading to decreased mature ATR
mRNA and protein levels. These data coincide with a study re-
ported while this article was in revision, which also observed an
ATR splicing defect (50). In addition to the effect on ATR, we
observed decreases in the levels of the DNA damage response pro-
teins ATRIP, TOPBP1, RAD50, and MRE11. These data are con-
sistent with a previous report that found reduced expression levels
of several DNA repair proteins in ERH-depleted cells, including
ATR, MRE11, and RAD50 (17).

Importantly, our RNA-seq analysis demonstrated decreased
expression of numerous DNA replication and repair genes in
ERH-deficient cells, including ATR, MCM2, MCM3, MCM5,
MCM6, RFC2, RFC3, ORC1, GINS2, POLA1, POLD3, POLE2,
MRE11A, MSH2, BLM, and FANCM. Decreased expression of
these important replication and repair genes, along with numer-
ous additional cell cycle and DNA packaging genes, most likely
contributes to the reduced replication rates and persistence of
DNA damage observed in ERH-deficient cells. ERH loss resulted
in splicing defects in genes that function in DNA packaging, pro-
cessing, and repair. However, genes involved in other cellular pro-
cesses also displayed insufficient splicing. Therefore, while ERH
affects splicing of transcripts important for replication and repair,
it also impacts splicing of a broader range of genes.

ERH is a small protein that does not contain a known func-
tional domain. Crystallization studies demonstrated that ERH
forms a homodimer, and conserved surface residues indicate that
they may function as protein-protein interaction interfaces (51–
53). It is possible that ERH functions as a cofactor for the assembly
or function of RNA processing complexes. In this regard, it is
interesting that ERH interacts with protein-arginine methyltrans-
ferase 1 (PRMT1). Arginine methylation is associated with RNA
processing, including mRNA splicing (54), and a number of RNA-
binding proteins undergo arginine methylation (54–56). PRMT1
methylates arginine-glycine-rich (RG-rich) regions. CHTOP is a
known substrate of PRMT1, and several of the ERH-interacting
proteins that we identified contain RG-rich regions that may be
potential methylation sites. Thus, it is possible that ERH regulates
posttranslational modifications in multiple RNA processing pro-
teins to influence their function.

In conclusion, our data are consistent with a model in which ERH
is needed for the proper splicing and expression of replication stress
proteins, including ATR. Thus, ERH loss of function causes defects in
ATR signaling, replication, and replication stress responses. This
function likely explains the original observation of a genetic interac-
tion of Drosophila E(r) and rudimentary (r) genes. rudimentary
encodes a protein required for the pyrimidine biosynthetic path-
way, so its mutation creates replication stress, which requires the
ATR pathway. Mutations in Drosophila E(r) impair the replication
stress response and cause the enhanced phenotype.
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