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CRISPR-Cas9 technology has rapidly changed the landscape for how biologists and bioengineers study and manipulate the ge-
nome. Derived from the bacterial adaptive immune system, CRISPR-Cas9 has been coopted and repurposed for a variety of new
functions, including the activation or repression of gene expression (termed CRISPRa or CRISPRI, respectively). This represents
an exciting alternative to previously used repression or activation technologies such as RNA interference (RNAIi) or the use of
gene overexpression vectors. We have only just begun exploring the possibilities that CRISPR technology offers for gene regula-
tion and the control of cell identity and behavior. In this review, we describe the recent advances of CRISPR-Cas9 technology for

gene regulation and outline advantages and disadvantages of CRISPRa and CRISPRi (CRISPRa/i) relative to alternative

technologies.

he ability to regulate expression is essential to the study of

biology, from basic biological research to clinical applications
for the treatment of disease. Since the elucidation of the central
dogma of molecular biology, we have been searching for ways to
manipulate and perturb gene expression. In recent years, new
technological breakthroughs have provided greater precision,
ease, and throughput in the manipulation of gene regulation.

One such technology, CRISPR-Cas9 (clustered regularly in-
terspaced short palindromic repeats-CRISPR associated 9), has
rapidly shifted the landscape for studying and manipulating
the genome. Repurposed from the bacterial immune system for
cleaving foreign DNA (1), this technology consists of the Cas9
endonuclease and a target-identifying CRISPR RNA (crRNA)
duplex made up of two RNA components: crRNA and trans-acti-
vating crRNA (tracrRNA) (Fig. 1A) (2). These two RNAs can be
engineered into a chimeric single guide RNA (sgRNA), simplify-
ingits use (3). The sgRNA base pairs with the DNA target and can
be easily programmed to target an 18- to 25-bp sequence of inter-
est. The only constraint is that the sgRNA-binding site must be
adjacent to a short DNA motif termed the protospacer-adjacent
motif (PAM) (3, 4). In the most commonly used form of Cas9,
derived from Streptococcus pyogenes, the PAM sequence is NGG
(where N is any nucleotide and G is the base guanine), although
NAG (where A is adenine) also functions sporadically, with lower
efficiency than NGG (5). NGG can be found every 8 bp on average
in the human genome, rendering S. pyogenes Cas9 an extremely
versatile genetic scissor (6).

This Cas9-sgRNA complex has proven to be incredibly useful
as a genome-editing tool. The simplicity of designing the 20-nu-
cleotide (nt) DNA base pairing portion of an sgRNA and Cas9’s
natural RNA-directed endonuclease activity makes targeting Cas9
to new DNA sites a straightforward task. Once targeted to the
DNA, Cas9 creates a blunt-ended double-stranded break (DSB)
within the target sequence (3, 4). This DSB can be used to facilitate
generation of indel mutations that cause a frameshift within the
coding sequence of a gene due to imperfect repair by the native
host DNA repair pathway (6-8). Alternatively, by supplying a re-
pair template with homology to the cut site, Cas9 can facilitate
targeted integrations of precise mutations or insertions into the
genome (9, 10). CRISPR-Cas9 has been used successfully in a wide
variety of organisms, from bacteria and yeast to plants and ani-
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mals, both invertebrates and vertebrates (1, 8, 11-14). CRISPR’s
potential to expand genome engineering of previously intractable
organisms cannot be overstated but is not reviewed here, as there
are already several high-quality reviews on the subject (2, 15-18).

In addition to its editing potential, the CRISPR-Cas9 system
offers exciting possibilities for genetic and epigenetic regulation.
One strength of CRISPR technology lies in the fact that it brings
together DNA, RNA, and protein in a predictable and easily pro-
grammable manner. This means that the Cas9-sgRNA complex
can act as a scaffold to recruit a broad range of effectors or markers
to specific DNA sequences. It is this property of CRISPR-Cas9 that
has been exploited to regulate gene expression at the transcrip-
tional level, either to activate genes (CRISPRa) or to repress
genes (CRISPRi). Here, we review the characteristics and use of
CRISPRa and CRISPRi (CRISPRa/i) and how these tools com-
pare to alternative gene regulation systems.

REPURPOSING CRISPR-Cas9 FOR GENE ACTIVATION

To convert Cas9 from a DNA scissor into a gene activator, it is
necessary to disrupt its nuclease activity. Cas9’s two nuclease do-
mains, the RuvC and HNH domains, are conserved among several
types of nucleases, and each is responsible for cutting one strand of
DNA upon binding (3, 4, 19). We and others have introduced
mutations into these two domains to create a nuclease-deactivated
Cas9 (dCas9) (Fig. 1A) (3, 4, 20-22). This converts the Cas9 nu-
clease into a generic RNA-guided DNA-binding protein. It is then
possible to fuse effectors directly to dCas9, which essentially trans-
forms the dCas9-effector fusion into an easily programmable ar-
tificial transcription factor upon being paired with a target-spe-
cific sgRNA. As the RuvC and HNH domains are conserved
among Cas9s from other bacterial species, this approach provides
a general strategy for repurposing orthogonal Cas9s into RNA-
guided DNA-binding proteins.

Accepted manuscript posted online 14 September 2015

Citation La Russa MF, Qi LS. 2015. The new state of the art: Cas9 for gene
activation and repression. Mol Cell Biol 35:3800-3809. doi:10.1128/MCB.00512-15.

Address correspondence to Lei S. Qj, stanley.qi@stanford.edu.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.

November 2015 Volume 35 Number 22

1sanb Aq 6T0Z ‘T lequaldas uo /610 wse qowy/:dnuy woly papeojumog


http://dx.doi.org/10.1128/MCB.00512-15
http://mcb.asm.org
http://mcb.asm.org/

Minireview

Nuclease-deactivating
mutation

Bacterial Activator ~ w subunit

Activator
Module

VP64
sfGFP

SunTag chain scFv
(10X or 24X)

Mammalian

. VP64 Mammalian Repressor
Activator

scFv recognition
peptide

Activator
Module
HSF1
p65
i MCP RBP
SAM Activator VPG4
Activator Repressor
Module Module
scRNA scRNA
O
" " VP64 KRAB
4
MS2 Hairpin com Hairpin
MCP RBP ComRBP
Activating scRNA complex Repressing scRNA complex

FIG 1 Engineered CRISPRa/i systems. (A) In endogenous type I1I-B CRISPR systems like that of S. pyogenes (left), there are three essential components for
nuclease activity. These components are the Cas9 protein, crRNA, and trans-activating crRNA (tractrRNA), which base pair with each other. This Cas9-RNA
complex is able to cleave the DNA targeted by the crRNA and which is adjacent to a PAM site (red). Cleavage sites are indicated by Xs. To simplify and adapt
CRISPR for gene regulation (right), mutations in the nuclease domains have been introduced into Cas9, rendering it a dCas9. Additionally, the crRNA and
tracrRNA have been combined into an sgRNA. (B) To control gene expression in bacterial cells, dCas9 can be fused with the w subunit of RNA polymerase for
activation (left) or can repress transcription by sterically blocking RNA polymerase (right). (C) To turn dCas9 into an artificial transcription factor in mammalian
cells, it can be fused with a VP64 activator (left) or a KRAB repressor (right). (D) The SunTag activation system (left) consists of dCas9 fused to several tandem
repeats of a short peptide sequence separated by linkers. The SunTag activator module (right) is an scFv, which specifically binds the SunTag peptide. The scFv
is fused to stGFP and VP64. (E) The VPR activation system is dCas9 fused to VP64, p65, and Rta linked in tandem. (F) In the SAM activation system (left), dCas9
is fused to VP64. In addition, the sgRNA has been modified such that it contains two MS2 hairpins (green). An additional activator module (right) binds to an
MS2 hairpin via the RNA-binding protein MCP. The MCP is fused to the activators p65 and HSF1. (G) The scRNA system can be adapted such that it can act as
an activator or repressor (left). The activator and repressor modules (right) consist of an RNA-binding protein fused to VP64 and KRAB, respectively. The
activating and repressing systems can be used orthogonally when different scRNAs that recruit different modules are used. Here, the MS2 scRNA recruits the
MCP activator module and the com scRNA recruits the Com repressor module.

One type of effector that can be fused to dCas9 is a transcrip-
tional activator. There are different forms of these dCas9-activator
fusions. For example, Bikard et al. fused the w subunit of RNA
polymerase to dCas9 for use in Escherichia coli (Fig. 1B) (5, 23).
This fusion was able to activate reporter gene expression up to
3-fold. Currently, the report by Bikard et al. is the only one to have
been published on the use of CRISPRa in bacteria, and further
development and optimization are likely needed before its use can
be broadly applied to endogenous genes.

In eukaryotic cells, the first generation of dCas9 activators con-
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sisted of dCas9 fused to the activation domain of p65 or a VP64
activator, an engineered tetramer of the herpes simplex VP16
transcriptional activator domain (Fig. 1C) (24). The dCas9-VP64
fusion proved more effective than the p65 fusion and has been
used more ubiquitously. A number of studies have demonstrated
that dCas9-VP64 is able to activate silent endogenous genes and
reporters or to upregulate already active genes (22, 24-27). This
CRISPRa complex functions in eukaryotic organisms such as bud-
ding yeast or mammalian cells. However, the activation seen in
mammalian cells is usually moderate, about 2-fold to 5-fold, on
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average, using a single sgRNA. This activation can be enhanced by
using multiple sgRNAs tiled across the promoter (25, 27), suggest-
ing that recruiting additional activators to the target gene en-
hances activation. Therefore, the second generation of CRISPRa
made use of strategies to corecruit multiple activators.

There have been several attempts to improve the direct fusion
design for the second generation of CRISPRa. One strategy, dem-
onstrated by Gilbert et al. and Tanenbaum et al., is to amplify
activation by transforming dCas9 into a scaffold capable of re-
cruiting many copies of an activator (28, 29). This is done by
fusing dCas9 to a tandem array of peptides, called a SunTag array,
which recruits many copies of the VP64 effector (Fig. 1D). The
recruitment strategy involves fusing VP64 to an scFv (single-chain
variable fragment), an engineered portion of an antibody that
binds to the peptide repeats in the SunTag array. Compared to the
~2-fold increase observed with dCas9-VP64 alone (30), we ob-
served a 50-fold increase at the protein level with dCas9-SunTag
for endogenous genes such as the CXCR4 chemokine receptor
gene in human erythroleukemia K562 cells. Activating endoge-
nous CXCR4 using dCas9-SunTag was sufficient to produce sig-
nificant increases in cell migration. This system represents a major
improvement in activation efficiency, as one dCas9 can now re-
cruit up to 24 copies of the scFv-VP64 fusion protein, rather than
delivering just 1 VP64 via a dCas9-VP64 fusion. This is especially
important given that simply increasing the number of copies of
VP16 in a direct protein fusion (i.e., using VP160) has limited
effectiveness (27).

Another strategy for CRISPR-dependent gene activation, re-
ported by Chavez et al., employs multiple different activators to
synergistically amplify activation (31). The authors created a tri-
partite effector fused to dCas9, composed of activators VP64, p65,
and Rta (VPR) linked in tandem (Fig. 1E). These three activators
were joined in a defined order to strongly activate genes. The
dCas9-VPR system was successfully employed in human, mouse,
Drosophila melanogaster, and Saccharomyces cerevisiae cells. Addi-
tionally, it can upregulate endogenous gene expression from 5- to
300-fold at the mRNA level compared to a single dCas9-VP64
fusion. It should be noted that this was achieved using pools of 3 to
4 different sgRNAs per endogenous gene, which has been shown
to greatly increase activation for the first-generation dCas9-VP64
fusion (25, 27). In the future, it will be useful to test additional
activators and see if an even greater effect can be achieved and also
to look at endogenous gene activation using a single sgRNA.

A third approach, described by Konermann et al., is termed the
synergistic activation mediator (SAM) system (32). Like the VPR
activator, the SAM system employs multiple transcriptional acti-
vators to create a synergistic effect. This tool makes use of the
first-generation version of dCas9-VP64, but the authors engi-
neered additional features into the sgRNA to enhance activator
recruitment. This new sgRNA contains two copies of an RNA
hairpin from the MS2 bacteriophage, which interacts with the
RNA-binding protein (RBP) MCP (MS2 coat protein) (Fig. 1F).
An additional activation module was created by fusing MCP to the
p65 transcriptional activator as well as to the activating domain of
human heat shock factor 1 (HSF1). MCP binds to MS2 as a dimer,
so up to four additional copies of the activation module can be
recruited per dCas9-VP64. The SAM system can produce a wide
(two- to multiple-thousand-fold) range of enhanced activation of
endogenous genes at the mRNA level compared to dCas9-VP64,
depending on baseline expression. This includes both protein
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coding genes and long noncoding RNAs (IncRNAs). In the future,
it will be informative to try a similar approach to repress gene
expression (see below).

Finally, Hilton et al. were able to fuse a histone acetyltrans-
ferase to dCas9, creating a dCas9-p300°°* fusion activator capable
of acting as an epigenome editing platform (33). This fusion was
able to enable activation at both proximal and distal enhancers of
genes. This is in contrast to the dCas9-VP64 activator, which must
be targeted to a promoter to achieve significant gene activation.
Furthermore, the dCas9-p300°°™ fusion achieved higher activa-
tion than dCas9-VP64 alone. In the future, it will be interesting to
fuse other epigenome modifiers to dCas9. Such tools could be
used to specifically probe the effects that epigenetic changes
have on gene expression levels.

Together, these transcriptional activation systems function
across a range of cell types and species and provide many options
for transcriptional and epigenetic manipulation. Each strategy
comes with its own advantages and disadvantages. For example,
while the VPR activator relies on fewer components, it has not yet
been validated for larger-scale screens like the SunTag and SAM
activators. The high activation levels of the VPR system depended
on using a pool of 3 to 4 sgRNAs, making it more difficult to use
effectively in genome-wide screens. In addition, there may be cell
type-specific efficiency or toxicity issues with each of these tech-
nologies. All of these tools are relatively new, and so it will be
interesting to compare their efficiencies and specificities directly
in a range of cell types and for a variety of genes.

TRANSFORMING dCas9 INTO A TRANSCRIPTIONAL
REPRESSOR

In addition to being fused to transcriptional activators, dCas9 can
also function as a repressor. This was first demonstrated in bacte-
rial cells, where dCas9 alone was able to act as a transcriptional
repressor by sterically hindering the transcriptional activity of
RNA polymerase (Fig. 1B) (20, 23). This provides a very efficient
way to silence transcription in bacteria, usually in the range of
1,000-fold. Repression is tunable, as the choice of sgRNA site de-
termines the strength of its repressive effect. It is also rapidly re-
versible using inducible promoters to control expression of dCas9.
This system is advantageous because genes can be efficiently re-
pressed without the addition of specific effectors, making the re-
pression system simpler and more transferable across genes, spe-
cies, and cell types than the activation system.

This steric hindrance strategy for repression has been em-
ployed in yeast and mammalian cells (20, 24). While the simple
dCas9 transcriptional blockade has been found to work in these
cells, the efficiency of repression is much lower. This is likely be-
cause the binding of dCas9 to DNA is not sufficient to disrupt the
action of eukaryotic RNA polymerases. One strategy to improve
the efficiency of repression in mammalian cells has been to fuse
transcriptional repressors to dCas9 (Fig. 1C) (21, 24). These re-
pressors include the KRAB (Kriippel-associated box) domain of
Kox1, the CS (chromoshadow) domain of HP1«, the WPRW do-
main of Hes1, and four concatenated copies of the mSin3 interac-
tion domain (SID4X) (21, 24). Of these, the KRAB-dCas9 fusion
has proven to be the most effective. The most active sgRNAs can
achieve repression levels in the range of 90% to 99%, although it
may be necessary to screen through 5 to 10 sgRNAs to find 1 or 2
of the most highly active guides (29). The efficacy of sgRNAs for
CRISPRa/i may be further improved by bioinformatically model-
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FIG 2 Multiplexed gene regulation with CRISPRa/i. (A) A dCas9 effector fusion is capable of perturbing expression of multiple genes simultaneously. In the
example here, multiple genes are repressed simultaneously. (B) With the scRNA system, it is possible to use dCas9 to activate and repress multiple distinct genes
simultaneously. The diversity of function arises from the different RNA hairpins attached to the sgRNA, which recruit orthogonal effectors. Here, the com RNA
hairpin (purple) recruits a repressive effector module and the MS2 RNA hairpin (green) recruits an activating effector module.

ing the efficacy of large pools of sgRNAs. While this has been done
for both CRISPR knockouts (KO) and CRISPRa/j, iteratively test-
ing and analyzing sgRNA efficiency can enormously improve the
system.

While these strategies have proven quite effective at repressing
transcription, there are improvements that can be made. For ex-
ample, we have found that using an N-terminal KRAB fusion is
more effective at repression than using a C-terminal fusion (com-
pare the repression reported in reference 29 to that reported in
reference 24) (additional data not published). In addition, the
repression system might also be improved by combining several
synergistic repressors in a manner similar to the activation systems
described above (31, 32).

ENGINEERING COMPLEX REGULATORY PATTERNS USING
CRISPRa/i

These CRISPRa/i systems are remarkably versatile. The activating
or repressing dCas9 fusions can regulate a single target or be mul-
tiplexed to regulate multiple targets at once (Fig. 2A) (24, 27, 32).
In mammalian cells, multiple sgRNAs can be used in the same cell
while still efficiently regulating any one target (24, 32). This ability
can be used to upregulate or downregulate multiple genes within
the same pathway.

One exciting use of CRISPRa/i is to regulate multiple genes in
multiple ways (i.e., using activation and repression) within a sin-
gle cell. One disadvantage of the direct fusion of effectors to dCas9
as described above is that only one type of perturbation can occur
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within a given cell: dCas9 either activates or represses genes but
does not do both. To work around this, Zalatan et al. turned the
sgRNA into a scaffold to recruit different types of effectors (30)
(Fig. 1G). This is made possible by fusing the effectors to RNA-
binding proteins (RBPs) from bacteriophages, which recognize
specific RNA hairpin structures. These RNA hairpins can be fused
to the sgRNA, creating a scaffold RNA (scRNA). By fusing differ-
ent RNA hairpins to the sgRNA, different RBP-effector combina-
tions can be recruited. Thus, the scRNA encodes both the target
gene location (through the DNA-base-pairing region) and the
type of gene regulation (through the additional RBP-recruiting
RNA hairpin). This strategy has been used in both yeast and mam-
malian cells to regulate genes in orthogonal directions simultane-
ously (30) (Fig. 2B). With three distinct sets of RBP-scRNA pairs,
there are many possibilities for synthetic biology using this tech-
nology.

The varied dCas9 and Cas9-mediated regulatory strategies can
be combined in diverse ways to create unprecedented levels of
control. This is particularly relevant to synthetic biology and cel-
lular engineering studies. This has been illustrated by various
groups that have used dCas9 or Cas9 to create logic gates that
influence cellular outcomes. Zalatan et al. reprogrammed a
branched metabolic pathway in yeast to control the production of
various product metabolites (30). Liu et al. used a nuclease Cas9 to
create a promoter-based “AND” logic gate to identify and control
a specific type of cancer cell (34). Promoter-based logic gates (e.g.,
AND, OR, and NOT) could also be combined with the scRNA
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components to create complex regulatory patterns that are in-
duced only under certain conditions. Tuning defined sets of genes
with such precision will allow extraordinary control over cell be-
havior and identity.

LARGE-SCALE SCREENS WITH CRISPRa/i

In addition to its use for multiplexed regulation, the CRISPR-Cas9
system can be adapted for use in pooled genetic screens to inter-
rogate the functions of many genes at once. This was first shown
by several groups using nuclease-active Cas9 for genome-wide
knockout (KO) screens in mammalian cells (35-37). These
groups were able to pool sets of tens of thousands of sgRNAs, with
a coverage of approximately 3 to 10 sgRNAs per gene, to investi-
gate a range of phenotypes from cell growth to drug resistance to
host factors influencing viral susceptibility. While these have been
powerful demonstrations of CRISPR-Cas9 technology, we have
been able to broaden our ability to perform genome-wide screens
by adapting CRISPRa/i to screening technology as well.

Recently, both CRISPRa and CRISPRi have been employed in
pooled genetic screens in mammalian cells (29, 32). This is a par-
ticularly revolutionary technique for gene activation, as CRISPRa
overcomes limitations of previous gene overexpression methods
(discussed further below). The CRISPR KO and CRISPRa/i
screening systems can be complementary to each other, as each
can enrich for different sets of genes responsible for a certain phe-
notype. For example, the genes that are most highly enriched with
CRISPRa are likely those that “drop out” of a CRISPRi or KO
screen; likewise, the genes that are most highly enriched with
CRISPRi or KO are likely those that drop out of a CRISPRa screen.
Since there is less sensitivity and more noise in the sgRNAs that
drop out of a screen, upregulation and downregulation may offer
complementary sensitivities (see examples in references 29 and 36
versus reference 32), although this is not necessarily always true.

It will be important to carefully consider all of these aspects
when designing genome-wide functional screens. Investigators
who wish to thoroughly probe as many of the genes involved in a
given process as possible may need to perform 2 to 3 different
types of CRISPR screens.

SPECIFICITY OF CRISPRa/i

While there have been several studies examining the off-target
effects for the nuclease version of Cas9, investigation into the spec-
ificity of the CRISPRa/i system is still in its nascent stages. One
study used RNA sequencing in cells expressing an sgRNA target-
ing an exogenously added green fluorescent protein (GFP) com-
pared to a nontargeting sgRNA control (24). While the GFP gene
was the only gene which was significantly repressed genome wide,
only a single sgRNA was investigated. Other studies, using both
the first-generation version of dCas9-VP64 and the second-gen-
eration SAM system, have used a similar technique to show the
specificity of gene activation using CRISPRa (32, 33, 39).

It is difficult to directly compare nuclease Cas9 and dCas9 ef-
fectors, since the activity readouts of the two are different. How-
ever, there are some indications that the dCas9 effector function
may be more sensitive to mismatches (and thus less prone to off-
target effects) than Cas9. This possibility is supported by work
from Gilbert et al., where dCas9-KRAB and Cas9 nuclease were
tested for their ability to function with sgRNAs containing mis-
matches to a given target site (29). In this study, sgRNAs contain-
ing 1- to 5-bp mismatches were systematically tested for activity
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and normalized to fully on-target sgRNAs for both nuclease Cas9
and dCas9-KRAB. Across the entire panel of sgRNAs tested,
dCas9-KRAB repression was more affected by mismatches than
nuclease Cas9 cleavage. In the future, it will be important to con-
tinue comparing dCas9 effectors with Cas9 nuclease so that we can
better assess which technology to use for a given application.

In one genome-wide chromatin immunoprecipitation se-
quencing (ChIP-seq) study by Polstein et al., a hemagglutinin
(HA)-tagged dCas9 was found to bind quite specifically (between
4 and 31 off-target sites) (39). The authors also correlated this with
dCas9-VP64 activation as assayed by RNA-seq and found that the
dCas9-VP64 activation was also quite specific. This is in contrast
to the results of two genome-wide ChIP-seq studies performed by
Kuscu etal. and Wu et al. using an HA-tagged dCas9, where dCas9
was found to bind promiscuously (up to 100s to 1,000s of off-
target sites) to sequences matching the “seed” region in the sgRNA
portion adjacent to the PAM (40, 41). Interestingly, nuclease Cas9
using the same sgRNAs was quite specific, cleaving only the few
off-target sites with extensive base pairing between the sgRNA and
off-target DNA.

One possible explanation for the apparent promiscuity of
dCas9 reported by Kuscu et al. and Wu et al. could be that, while
dCas9 and Cas9 interrogate many sites transiently, prolonged in-
teractions occur only with extensive matching between the sgRNA
and target DNA (42). Transient interrogations would be captured
in the assays described above, since formaldehyde cross-linking
was used to fix samples. If the three studies had used different
fixation protocols and peak-calling or thresholding methods to
process the ChIP-seq data, they could conceivably have generated
quite different results. The studies described above are consistent
with the model that Cas9 is fully functional as a nuclease after only
extensive base pairing between the sgRNA and target DNA (43).
The specificity of nuclease Cas9 function due to the necessity of
prolonged binding may also apply to dCas9 effectors, especially
those that need to recruit other proteins to be active. More work
must be performed to continue probing dCas9 off-target binding
and effector function.

Altogether, while research on dCas9 effector specificity is still
in its early stages, the initial studies have been quite promising
with respect to the future use of CRISPRa/i. In the future, it will be
important to continue to probe for off-target effects for a wide
variety of sgRNAs and for all of the new types of dCas9 effector
combinations, as different mechanisms of action for each effector
may result in different levels of functional promiscuity. With
greater knowledge about off-target effects from the use of
CRISPRa/i, we can better judge the rate of false positives in using
these technologies for screens. Furthermore, such knowledge can
be used to inform us what level of sgRNA coverage per gene is
needed to extract the maximum amount of information from as
small a library as possible, which is particularly important in
working with systems where it is difficult to scale up the number of
cells used.

CRISPRa VERSUS PREVIOUS ACTIVATION METHODS

CRISPRa offers many advantages over alternative gene overex-
pression or activation methods (Table 1). One technique to over-
express genes is to clone the open reading frame (ORF) or cDNA
of the gene of interest (reviewed in reference 45). For longer or
GC-rich genes, this alone can be technically difficult. In cloning
many genes at once using this method, there would be a bias to-
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ward smaller and easier-to-amplify genes. Additionally, when
cloning from the cDNA, one may be missing physiologically rele-
vant splice variants. However, there are some applications where
the use of ORF overexpression constructs is more suitable. For
example, it is possible to overexpress a certain splice variant or a
mutant version of an allele (45). This is particularly useful when
studying disease-associated mutations or variants. Additionally,
ORF overexpression is useful for introducing fluorophore- or
peptide-tagged versions of proteins, which can be invaluable for
tracking the location or binding partners of the given protein
when no good antibody is available (57).

Another, alternative approach is to use other engineered tran-
scriptional activators to turn on gene expression. These include
zinc finger (ZF) effectors (58-60) and transcriptional activator-
like effectors (TALEs) (38, 50, 61) fused to a set of activation
domains similar to those described above for CRISPRa. As with
dCas9 activators, ZF and TALE activators target specific sequences
of DNA and recruit transcriptional machinery to activate tran-
scription. However, Cas9 finds its DNA target through simple
Watson-Crick base pairing interactions between the sgRNA and
target DNA, whereas ZFs and TALEs rely on protein-DNA inter-
actions. Typical engineered zinc finger tandem arrays possess be-
tween 3 and 6 individual zinc finger motifs for binding target DNA
ranging from 9 to 18 bp in length (59). An individual zinc finger
motif targets 3 or 4 nucleotides, and creating a composite ZF pro-
tein to target novel DNA sites can require much engineering and
testing (51). TALEs are much easier to program than ZFs. A TALE
contains a series of repeat variable domains (RVDs), each target-
ing a single DNA nucleotide. The RVD code for all DNA nucleo-
tides has been well characterized (62). Thus, a TALE can easily be
programmed by creating an array of RVDs that bind to the nucle-
otides in the target DNA.

While there are limited reports directly comparing ZF, TALE,
and CRISPR activators, they seem to achieve similar levels of ac-
tivation (31, 33, 39). The main disadvantage of TALEs and ZF
effectors compared to CRISPR-Cas9 is that they require more
complicated cloning to assemble, making them less user-friendly
overall and not amenable to genome-wide screens. However, the
use of TALEs in particular can be advantageous when a particular
target area lacks a PAM, since TALEs can be programmed to target
any sequence. TALEs are able to distinguish between methylcyto-
sine (mC) and cytosine (C), which may be advantageous or dis-
advantageous, depending on the situation (52, 53, 63). The meth-
ylation status of the targeted site must be taken into account when
designing TALEs, which is not the case for Cas9 targeting. Finally,
some of the CRISPRa systems require many components, making
them potentially much more complicated to deliver than the one-
component ZF or TALE activators. These characteristics must
all be taken into account when deciding which activation sys-
tem to use.

CRISPRi VERSUS PREVIOUS REPRESSION METHODS

CRISPRI also offers several advantages over previous forms of
gene repression, although it is not necessarily the best choice for
every assay (Table 2). The most widely used repression tool pre-
dating CRISPRi is RNAi technology (65). RNAi can refer to either
to small interfering RNAs (siRNAs) or short hairpin RNAs
(shRNAs), which make use of the cell’s endogenous siRNA and
microRNA (miRNA) pathways for processing and function (75).
These pathways are naturally occurring cellular processes used to
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regulate mRNA translation and stability, and both employ small

<
(]
5|5 E J o (approximately 18- to 24-nt) double-stranded RNAs (dsRNAs).
s|g2 2 $4 - During siRNA and miRNA processing, the precursor dsRNA is
gl g £ < loaded into the RNA-induced silencing complex (RISC), where
one strand of the RNA is degraded, while the other (the guide
] 5 Lz strand) remains. The mature RISC is then guided to its target
£ 2 g 8% mRNA, where it causes repression in various ways (reviewed in
SlZ8E2 2E more detail in references 76 and 70).
g % gé § §§~§ When the guide strand shares perfect complementarity with its
;L 22534 EER: mRNA target, the target is directed down the siRNA pathway and
< O O N7 . . .
CIEEER é < & E is degraded through endonucleolytic cleavage (76). When there is
21T 2g%8 ¢ z gk imperfect complementation between the guide and the target
Z | - - = mRNA but a match in the guide strand’s seed region (nucleotides
2 to 8), the mRNA is directed down the miRNA pathway (71).
A g g 2w 3 Repression through the miRNA pathway can cause degradation
=, ERCE R = E=© . . . e .
PR GZESSSEER by mRNA deadenylation or suppression of translation initiation
8z gEScET Ba .
S12% S P w288 % or elongation (70, 76).
Ak £g s E 2S5 Since RNAi makes use of the cell’s endogenous small RNA
Z|8 = % = é 255858 Z £ processing machinery, only a single, small component must be
= |3 = = o = . . . .
El5® g s =7 ES<S8ED added to achieve repression: the shRNA or siRNA. This may make
w . . .
RNAI more advantageous in some systems, as other repression
. o . mechanisms may be more cumbersome to deliver. Some caution
£8 (52, 52 must still be taken, as there is evidence that hijacking the RISC
2%, |15 ¢ g . = g . using RNAi may prevent endogenous miRNAs from functioning
o E|ECEE R Hodwn
EF55|5822 ) (66)
E2ElE""T 58 E°°C7 3 . oo .
<=#£|0 = O z RNAi-based screens have revolutionized our ability to test the
function of many genes at once through pooled, genome-wide
LS knockdown screens. However, there are many concerns about off-
E gbg‘ target effects and reproducibility. For example, meta-analyses of
= S= - . . o ere .
R R 2 8 RNAI screens have shown little reproducibility between different
studies (67, 77). This is in large part due to the prevalence of RNAi
- off-target effects. siRNAs and shRNAs act through a miRNA-like
- z = mechanism when the seed region of the dsSRNA binds to an mRNA
=£ 5‘) ) (68, 78). Hundreds of transcripts with a given seed may exist, and
) L . .
3 §'§ gﬁ”@ there is not currently a high-confidence method to rank these
i £ é ; £l £ alternative targets for the likelihood of being a true off-target (71).
- E Z Ei § L TE It is possible that a large number of RNAIi screen “hits” are due to
%‘ § g § g SR E off-target effects from such a mechanism. While this can be ac-
a counted for, it requires testing with mutated versions of the siRNA
- or shRNA and looking for a matching phenotype, which can be
3 Lé *; burdensome (79).
£ = 2. One way to reduce the rates of false negatives and false positives
E|B2¢8|, 4 o o is to have many unique shRNAs (or sgRNAs in the case of
e - = “ CRISPR) that target each gene in the library pool. To find the ideal
2 - - shRNA or sgRNA coverage and design, multiple studies have per-
- . .
o Z 5 Z 22 formed small-scale pooled screens with very high coverage of shR-
) ~ o3 p ynig 8
= S . .
5 E3 ':é) EZ =% : NAs or sgRNAs per gene (29, 69, 80, 81). These studies each iden-
E % E £ H % E £ - g g £, tified high-confidence hits and then computationally subdivided
e ; ‘g?n;) £ g aé g SSwE Z their libraries to (i) discover the number of sgRNAs required to
o ) » @ U v 5 .. . . ..
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SS 28 -l 5 5 . L .
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O £ é 3 § *é E I % s § ‘é Z £8 £ = modeling and iterative analysis and testing large pools of sgRNAs
[ Bl R= ) &R B0 =] ‘£ A . . . . . .
° Ej 52g¢ FE588¢8 EFSSE have resulted in significant improvements in both RNAi and
g §lg22% ysg5285 SEEEE CRISPRI (29, 69). It is now possible to use a library with 10 shR-
E == -oF = NAs or 10 sgRNAs per gene to produce robust results in a screen
s ]
g - although both RNAi and CRISPRi will no doubt benefit from
O o £E further refinement in the future.
= § |z E 2‘ £ Ultimately, the choice of whether to use CRISPRi or RNAi will
2 gg & z = Z: depend on the requirements of a given user. For small-scale use
=l 2818 Z £ E targeting only a few genes, CRISPRi has simpler design rules can
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achieve very high levels of knockdown (29). However, RNAi can
be advantageous in that one can target specific splice variants over
others, which is not possible with CRISPRi unless the different
variants have different transcription start sites. Additionally, it has
been shown that off-target effects from siRNAs can result in cell
toxicity in a cell type-dependent manner (82). This has not yet
been seen with CRISPRI, although the possibility has not been
systematically investigated. It may be that certain cell types toler-
ate RNAi or CRISPRi better, which will need to be determined
empirically. Finally, CRISPRI is a two-component system, whereas
RNAI is a one-component system. In assays where delivering two
components may be an issue, it may be more desirable to use
RNAI.

In the study of noncoding RNAs (ncRNAs), CRISPRi also of-
fers many advantages. Noncoding RNAs such as microRNAs
(miRNAs) and IncRNAs can be targeted by CRISPRIi in the same
manner as coding genes (29, 64). Since many miRNAs are redun-
dant, one can potentially make use of the multiplexing capability
of CRISPRI to hit all miRNAs in the same targeting “family” at
once. One alternative approach to CRISPRi is the use of antagomir
miRNA inhibitors, which are modified oligonucleotides that are
antisense with respect to the target miRNA (72, 73). They bind to
the miRNA with high affinity and prevent it from acting on its
target mRNA. However, these miRNA inhibitors can be expensive
and are specific for a single miRNA. An alternative approach is to
create miRNA “sponges,” an array of tandem repeats of miRNA
seed sequences, which act by sequestering active miRNAs and pre-
venting them from acting on their true targets (74). Since sponges
consist of an array of repeats, they can be difficult to synthesize or
clone. However, they may be the better choice if a user wants to
repress all miRNAs of the same family, which share the same seed.

CONCLUSIONS

The present is an exciting time for biologists, bioengineers, and
clinicians—anyone who has an interest in the effect of genes and
how to control them. CRISPR technology is ushering us into an
unprecedented era of biological control. Our toolkit keeps ex-
panding, with each new addition bringing greater precision and
power. While we have advanced much in such a short time, much
work remains to be done to continuously refine this technology.
We have only just begun to use these tools, and many basic tech-
nical, biological, and biomedical questions remain. With
CRISPRa/i, we have a powerful new means of answering them.
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