










FIG 9 Upstream signaling pathways connecting gene expression cascades triggered by LXR activity in a pharmacologically independent manner (mode
III). (A) Molecular regulators of gene expression networks associated with transcriptional mode III, identified with IPA. Heatmap color intensities correlate
with significance of right-tailed Fisher’s exact test. (B) Diagrams showing molecular interaction networks between signaling regulators and LXRs. Predicted
relationships among molecules yielded by IPA are indicated. The highest and lowest statistically significant P values are shown for each category.

Ramón-Vázquez et al. Molecular and Cellular Biology

March 2019 Volume 39 Issue 5 e00376-18 mcb.asm.org 16

 on January 25, 2021 by guest
http://m

cb.asm
.org/

D
ow

nloaded from
 



LXR�-associated functions has occurred, resulting in LXR� occupying a reduced num-
ber of genomic sites in comparison.

It is noteworthy that our motif analysis identified accompanying sequences that
were selectively associated with the binding of one LXR in particular. For example,
C/EBP-like sites were not found in the LXR�-specific peak set, whereas PBX1 sequences
were absent from the LXR� peak cluster. Interestingly, a signaling cascade dependent
on an LXR�-C/EBP� interaction has recently been described as important for insulin
induction of SREBP1c in the liver (51). In addition, a cooperative mechanism of action
has been previously described for complexes containing the homeodomain protein
PBX1. Interaction of Hox transcription factors with PBX1 complexes was demonstrated
to be necessary to modulate their binding specificity in Drosophila (52). More recently,
PBX1 pioneer binding ability for nonpermissive chromatin was identified in myoblasts,
and this activity is believed to facilitate the targeting of MyoD for muscle lineage gene
activation (53). It is possible that similar or distinctive interactions are also operating in
macrophages. However, to prove the function of these factors in LXR-specific binding
capacities, genetic manipulation of neighboring sequences and/or elimination of these
factors will be necessary. Nevertheless, it is therefore plausible that, despite a canonical
LXRE sequence being present in all of these LXR-specific clusters, the mutually exclusive
binding of each LXR could be facilitated by interactions with a cohort of accessory
factors that provide a permissive binding environment at these genomic locations.

We also used changes in H3K27 acetylation marks in response to agonist/antagonist
as readout of transcriptional activation/repression differences between LXRs. Strikingly,
we found that a remarkable number of the enhancer regions flanking LXR peaks
displayed weak or no H3K27ac changes in response to pharmacological agonist/
antagonist exposure. We hypothesize that this behavior is explained by one or both of
the following possibilities: (i) the presence of LXR on these locations is important to
confer a certain level of H3K27ac mark but does not promote acetylation modifications
in response to ligand, and (ii) LXR binding could be playing a mere bystander role in
these pharmacologically insensitive enhancer regions, and other factors could be
critically contributing to the appearance of these acetylation marks, including pioneer
factors or lineage-determining transcription factors (4).

Analysis of the microarray data set broadened and complemented our ChIP-seq data
interpretation. We defined three different groups of genes that were associated with
distinct putative mechanisms of transcriptional regulation (referred to as I, II, and III).
These three activation modes were found to be employed by both LXR� and LXR�.
Mode I is the derepression mode, which is exemplified by the gold standard LXR target,
Abca1. Mode I gene expression is higher under LXR-DKO control conditions than for the
iBMDM-LXR lines, but their expression increases upon GW3965 stimulation (20). Mode
II represents the canonical transcriptional activation mechanism that has been previ-
ously characterized in depth (35, 36), in which pharmacological responsiveness is
accompanied by higher expression in LXR�- or LXR�-expressing macrophages than
with the LXR-DKO line. Interestingly, a large set of genes found by expression com-
parison does not fall in these two classic modes, and we propose here a distinct mode
of action, called mode III, which represents pharmacologically nonresponsive transcrip-
tional activation. Within this category of mode III, we observe that expression values of
most genes do not respond to pharmacological antagonism with GW233 more so than
with GW3965, but their expression is still significantly higher than that observed in
LXR-DKO cells. It is possible that ectopic overexpression of LXR� or LXR�, even if
liganded by a potent antagonist, promotes the recruitment of coactivator complexes
that results in higher RNA expression levels of a large set of targets than do similar
conditions in LXR-DKO cells. However, future experiments are needed to directly test
the differential requirement of coregulators in modes I and II versus mode III LXR-
regulated gene expression. As mentioned above, this mode III comprises groups of
transcripts regulated dually by both LXR� and LXR� or exclusively by LXR� or LXR�.

Our bioinformatics analyses suggested that LXR� and LXR� participate in specific
biological functions beyond fatty acid and steroid metabolism. For example, LXR�-
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selective gene regulation was found to be linked to apoptosis and leukocyte migration.
Interestingly, we have recently demonstrated that LXRs regulate leukocyte chemotaxis
(54). It will be interesting to validate whether LXR� has a prominent role over LXR� in
leukocyte migration. On the other hand, specific functions for LXR� identified by Gene
Ontology and IPA analysis were linked to selection of thymocytes and lymphocyte
differentiation. Remarkably, binding sites for BATF, which is important for lymphoid
progenitor and Th differentiation (55, 56), were enriched in the LXR�-selective cluster.
Thus, it is possible that LXR� cooperates with BATF in pathways related to lymphocyte
activation. Processes controlled by LXR� in lymphocytes that regulate proliferation and
the acquired immune response have previously been reported (31).

In conclusion, our data provide compelling evidence that LXR� and LXR� bind to
both common and distinct regulatory sequences in the genome and exert transcrip-
tional control over a wide range of macrophage pathways. Importantly, these studies
highlight the importance of LXRs in direct transcriptional regulation of immune-related
functions. Moreover, the integration of our DNA binding and RNA expression data
reveal three distinct modes of transcriptional regulation by LXRs (depicted as models in
Fig. 10). Particularly important is the recognition that most LXR target genes are not
responsive to ligand (mode III). In the future it will be important to link the specific LXR�

and LXR� regulatory actions uncovered here to biological functions in different tissue-
resident macrophage populations, especially in the context of steady-state homeostasis
or disease.

MATERIALS AND METHODS
Mice. WT, LXR�-deficient (Nr1h3�/�), LXR�-deficient (Nr1h2�/�), and LXR�/�-deficient (Nr1h3�/�

Nr1h2�/�) (denoted LXR-DKO) mice on a mixed Sv129/C57BL/6 background were originally provided by
David Mangelsdorf (UTSW) (11). All mice were maintained under pathogen-free conditions in a
temperature-controlled room and a 12-h light-dark cycle in the animal facilities of Universidad de Las
Palmas de Gran Canaria (ULPGC). All animal studies were conducted in accordance with institutional
participants’ animal ethics research committees (protocol CEEA-ULPGC 2015-002 and resolution 414-
2015-ULPGC).

Cell culture and macrophage differentiation. Thioglycolate-elicited peritoneal macrophages were
obtained through injection of 3 ml of 3% sterile thioglycolate (BD Difco), pH 7.0, and after 3 days
macrophages were collected after washing the peritoneal cavity 3 times with cold phosphate-buffered
saline (PBS). All cells were cultured in Dulbecco´s modified Eagle´s medium (DMEM; Lonza) supple-
mented with 10% fetal bovine serum (Gibco), penicillin (100 U/ml) (Sigma), and streptomycin (100 �g/ml)
(Sigma). For BMDM cell differentiation, bone marrow from femur and tibia of 5- to 7-week-old WT or
LXR-DKO mice were isolated and cultured for 7 days in DMEM supplemented with 10% conditioned
medium containing M-CSF or GM-CSF and 1% antibiotics (penicillin and streptomycin) (Sigma).

Immortalization of murine macrophages from bone marrow and expression of FLAG-tagged
LXR� and LXR� receptors. Bone marrow-derived macrophages were immortalized using J2 retrovirus
as previously described (37, 38, 57). Ectopic expression of LXR� or LXR� was performed with a
pBabe-based retroviral expression system. Briefly, Phoenix A cells at 90% confluence were transfected
with the pBabe-3FLAG-LXR� or pBabe-3FLAG-LXR� vector (58), expressing either LXR� or LXR� nuclear
receptors and carrying antibiotic resistance to ampicillin and puromycin. For transfection, 10 �g of
plasmid and Lipofectamine 2000 (Thermo Fisher Scientific), 1:1.5, were used. After 6 h, the culture
medium was replaced with complete DMEM, and after 48 h the medium containing viral particles was
collected. Before exposing iBMDM-LXR-DKO cell culture to the viral supernatant, it was filtered through
a 45-�m-pore-size filter and mixed with 10 �g/ml Polybrene (Sigma). Cells were cultured with puromycin
(2 to 10 �g/ml gradually; Sigma-Aldrich) for 2 weeks. Several clones expressing LXR� or LXR� were
isolated and tested for similar expression using anti-FLAG M2 antibody. A detailed protocol of this
procedure is available through a recent review (59).

Treatment with LXR synthetic ligands. The following pharmacological treatments were used: 1 �M
synthetic LXR ligand GW3965 (46) and synthetic LXR antagonist GSK1440233A (here denoted GW233)
were both from GlaxoSmithKline (47) at 1 �M in dimethyl sulfoxide (Sigma) stock solution. Additionally,
cells were subjected to cholesterol biosynthesis inhibitor culture conditions: serum-free DMEM, supple-
mented with 0.2% bovine serum albumin (BSA; Sigma), and 2 �M zaragozic acid (squalene synthase
inhibitor; Sigma) for 4 h prior to exposure to the synthetic treatments.

Western blotting. Whole-cell protein extracts were obtained with radioimmunoprecipitation assay
buffer (RIPA; 10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1%
SDS, and protease inhibitor; Complete; Roche). Protein extracts were resolved by SDS-PAGE and
transferred to polyvinylidene difluoride (PVDF) membranes (Bio-Rad). Primary antibodies that recognize
ABCA1 (NB400-105; Novus), ABCG1 (NB400-132; Novus), FLAG M2 (F3165; Sigma), LXR�/� (kindly
provided by Knut R. Steffensen, Karolinska Institute [27]), �-actin (sc-47778, C4; Santa Cruz), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; G9545; Sigma) were used. Secondary antibod-
ies were horseradish peroxidase (HRP)-coupled anti-mouse and anti-rabbit antibodies (sc-2005 and
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sc-2004; Santa Cruz). Reactive bands were detected by Clarity Western ECL substrate (Bio-Rad). One
representative Western blot from three independent experiments is shown in each case.

ChIP assay. ChIP assay for the study of the LXR cistrome and variations in the acetylation status of
lysine 27 on histone H3 (H3K27ac) was performed as follows. Cell fixation and cross-linking were
performed. First, 2.5 � 107 macrophages were fixed with 2 �M disuccinimidyl glutarate (ThermoFisher
Scientific) in PBS for 30 min. Cells next were washed with PBS and fixed for another 10 min with 1%
methanol-free formaldehyde (ThermoFisher Scientific). The cross-linking reaction was quenched by
adding glycine to a final concentration of 200 mM (Sigma). Chromatin extraction was performed in a
two-step lysis reaction. First, a hypotonic buffer was used for nucleus extraction (50 mM Tris-HCl, pH 8,
85 mM KCl, 0.5% NP-40, supplemented with Complete [Roche] protease inhibitor). Second, chromatin
was resuspended in lysis buffer (50 mM Tris-HCl, pH 8, 10 mM EDTA, 1% SDS, Complete) and stored at
�80°C. Chromatin then was sonicated with a Diagenode Bioruptor sonication device for 60 min (30 s
on/30 s off) to generate 200- to 400-bp fragments, and 10% of the total volume was set aside to test
fragment size (input material). Immunoprecipitation was performed with 4 �g of anti-FLAG M2 antibody
or anti-H3K27ac (ab4729; Abcam) on 2 ml of previously diluted chromatin with dilution buffer (10 mM
Tris-HCl, pH 8, 2 mM EDTA, 1% Triton X-100, 150 mM NaCl, and 5% glycerol). Protein-bound immune
complexes were captured with 100 �g of magnetic Dynabeads protein A (Thermo-Fisher Scientific).
Unbound complexes were washed out with 3 buffers of increasing ionic strength: 20 mM Tris-HCl, pH 8,
2 mM EDTA, pH 8, 1% Triton X-100, 0.1% SDS, and either 150 mM (first buffer) or 500 mM NaCl (second
buffer), and 10 mM Tris-HCl, 1% sodium deoxycholate, 1 mM EDTA, pH 8, 1% NP-40, 250 mM LiCl (third

FIG 10 Proposed mechanisms for LXR nuclear receptor transcriptional activation. Through integration of
gene expression and genome binding data, three possible transcriptional LXR-mediated mechanisms or
modes (namely, I, II, and III) are proposed.
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buffer). These washes were followed by 2 washes with TE buffer (10 mM Tris-HCl, pH 8, 1 mM EDTA, pH
8). DNA fragments were reverse cross-linked for 30 min at 37°C in 1% SDS, 0.1 M NaHCO3, 10 �l of 5 M
NaCl, 6 �g/ml RNase A for 1 h at 55°C with 400 �g/ml proteinase K (TaKaRa). Column purification was
performed with a Qiagen QIAquick PCR purification kit, and DNA was eluted in a final volume of 50 �l,
5 �l of which was used for qPCR amplification. Primers used for ChIP-qPCR analysis are listed in Table S7
in the supplemental material.

High-throughput sequencing. ChIP DNA was quantified using a Qubit 2.0 fluorometer. To prepare
libraries, a minimum of 2 ng of anti-FLAG-immunoprecipitated DNA and 1 to 2 ng of anti-H3K27Ac-
immunoprecipitated DNA was pooled from 5 biological replicates per condition. Libraries were prepared
by the Genomics Unit of the Centre de Regulacion Genomica (CRG; Barcelona, Spain) using the NEBNext
Ultra DNA library preparation kit for Illumina (number 7370) by following the manufacturer’s instructions.
Twelve cycles of PCR were done for the final library amplification for all samples. Sequencing was
performed using Illumina HiSeq2000 equipment. For ChIP-seq, sequencing data (single-end 50-bp reads)
obtained from Illumina HiSeq2000 were aligned to the UCSC mm10 genome using bowtie2 aligner
(v2.2.9) (60). Each ChIP-seq experiment was normalized to a total number of 107 uniquely mapped tags.
Aligned read files were visualized with IGV (61) genome browser and analyzed with HOMER software
(http://homer.ucsd.edu/homer/) (v4.9). LXR peaks in each experiment were identified using HOMER and
compared to data obtained from LXR-DKO samples as a negative control (4). The peak list was further
filtered using a tag count cutoff of 40. This number was chosen by comparing the average tag count
found in LXR peaks in each experiment. LXR peaks and H3K27Ac regions were clustered and represented
as tag densities on a heatmap within a window of 4 kb around the LXR peaks using SEQminer (62).
Ontology analysis of each LXR peak cluster was performed with the DAVID bioinformatics resource (63).
Details of all applied bioinformatic analytical tools are available in a recent review protocol on this
particular data processing method (64). GSEA was used to correlate gene expression data with LXR
ChIP-seq data (65). GSEA analysis was performed using two lists: a preranked gene expression list
obtained from microarray analysis and a list of genes obtained from the annotation of ChIP-seq peaks to
the neighboring genes found on a window of �50-kb using BedTools (66) and the mouse genome
annotation of UCSC mm10.

RNA extraction, cDNA synthesis, and real-time qPCR. Total RNA was extracted from iBMDM-LXR-
DKO or iBMDM-LXR�/-LXR�, using TRI Reagent (MRC) by following product specifications. The RNA pellet
was resuspended with diethyl pyrocarbonate-treated water, and 1 �g was used for retrotranscription
with an iScript cDNA synthesis kit (Bio-Rad). For RT-qPCR assay, 5 �l of cDNA was mixed with 15 �l of 2�
PCR MasterMix (Diagenode) and 0.4 �M qPCR primer mix. Primers used for qPCR analysis are listed in
Table S7. Fluorescence emission was captured with a CFX Connect thermal cycler (Bio-Rad). The relative
levels of RNA were calculated according to the ΔΔCT method (where CT is threshold cycle), and individual
expression data were normalized to 36B4 expression.

Microarray analysis and biological pathway analysis. Changes in RNA expression promoted by
ligand treatment (GW3965 and GW233) in immortalized macrophages were analyzed using a
GeneChip mouse gene 2.0 ST array (Affymetrix). Raw expression values, obtained as log2 values and
normalized to reference genes, were processed by the Genomic Unit of the Complutense University
of Madrid. Heatmap representations were performed according to log-transformed values (log2) of
fold changes in expression and arranged in decreasing order of magnitude. Gene Ontology
biological process analysis (GO BP terms) and IPA were performed on transcripts classified in the
three heatmap categories under program default settings. Only significant terms (P value of �10�2)
are shown.

Statistical analysis. Real-time quantitative PCR expression measurements and immunoprecipitated
fragment amplification are presented as means (standard deviations [SD]) and were calculated from
three biological replicates. Statistical differences from reference conditions were analyzed with unpaired
t test.

Data availability. Data sets are available under NCBI GEO database accession series GSE104027.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/MCB

.00376-18.
SUPPLEMENTAL FILE 1, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.2 MB.
SUPPLEMENTAL FILE 5, XLSX file, 0.6 MB.
SUPPLEMENTAL FILE 6, XLSX file, 0.04 MB.
SUPPLEMENTAL FILE 7, XLSX file, 0.01 MB.
SUPPLEMENTAL FILE 8, PDF file, 0.03 MB.
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