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FIG. 12. Immunoblot analysis of the association of the 41K, 43K, and 120K proteins with nuclear structures. (A) Effect of different salt
concentrations. HeLa cells were permeabilized in situ as described in the text and further extracted for 3 min with 0.5 ml PIMPS buffer
containing the various concentrations of NaCl. Samples (100 ,ul) of the extractable (E) and the residual (R) fractions were analyzed by SDS-
PAGE and immunoblotting. Ascites fluids of 2B12 (1:1000) and 3G6(1:500) were combined to probe the blots. (B) Effect of various treatments
on the association of the 41K, 43K, and 120K proteins with nuclear structures at 2 M NaCl. HeLa cells were permeabilized in situ for 15 min in
an ice-water bath with 0.5 ml of PIMPS buffer containing DNase I (100 ,ug/ml), RNase A (100 ,ug/ml). VA (10 mM), aurintricarboxylic acid
(ATA) (2.5 mM), or sodium tetrathionate (NaTT) (2 mM) and were further extracted for 3 min with 0.5 ml of PIMPS containing 2 M NaCI.
Other experimental details were as described in (A).

particles which were more obvious at higher magnifications.
The association of the proteins with nuclear structures was
examined by immunoblotting. HeLa cells in monolayer were
extracted with 0.5% Triton X-100 (at 100 mM KCI), the
soluble fraction was removed, and the detergent-insoluble
residue of the cell monolayer was subjected to the various
extraction conditions described in Fig. 12 and 13. The mode
of association with nuclear structures of the 41K and 43K
proteins and of the 120K protein is different. Much of the
120K protein was released at 100 mM NaCl (Fig. 12A), and
the protein was susceptible to proteolysis, which generated a

slightly smaller polypeptide which showed as a doublet on
the immunoblots. Significant amounts (ca. 40%) of the 41K
and 43K proteins were still associated with remnant nuclear
structures even after DNase I digestion and extraction with 2
M NaCl (Fig. 12A). This DNase- and high-salt-resistant struc-
ture is operationally defined as the nuclear matrix (2, 3, 23).
The amount of the 41K and 43K proteins which was retained
at high salt concentration was somewhat variable and de-
pended on the state of transcription in the cell (unpublished
results). However, the 41K and 43K proteins were complete-
ly released at 0.5 M NaCl if RNase was included in the
extraction buffer (Fig. 13). van Eekelen and van Venrooij
(52) have identified two proteins of 41.5K and 43K which
became cross-linked to hnRNA upon irradiation of nuclei or
cells with UV light. They have suggested that these proteins
correspond to the C proteins of hnRNPs and that these are
associated with the nuclear matrix even after treatment with
RNase (52). These findings are different from those de-

scribed here in that we found that the association of what are
likely to be the same proteins with nuclear structures was
sensitive to RNase (Fig. 13). To further examine the possible
role of RNase-sensitive linkages in the association of 41K
and 43K proteins with nuclear structures. extractions were
also carried out in the presence of the RNase inhibitors VA
(4) and aurintricarboxylic acid (20). Aurintricarboxylic acid
did not have a marked effect on the amount of the 41K, 43K.
and 120K proteins which was retained with the nucleus at
high salt concentration. In contrast, in the presence of VA
there was a complete retention in the nucleus of all three
hnRNP proteins. The effect of VA may not necessarily be a
consequence of its RNase-inhibitory activity. The disulfide
cross-linker sodium tetrathionate, which was found to stabi-
lize nuclear matrix structures (23), had only a slight effect on
the amount of 41K, 43K, and 120K proteins which remained
with the matrix. The various treatments described in Fig. 12
and 13 were monitored also by immunofluorescence micros-
copy, which confirmed that the retained proteins were
confined to the nucleus. However, after DNase I digestion
and salt extraction, the immunofluorescence signal was
lower than that found by immunoblotting and was estimated
to be only about 10% of the total (data not shown). Altogeth-
er, the immunoblotting data can only be considered semi-
quantitative and would probably bias in favor of the nuclear
matrix-retained fraction because the total amount of protein
loaded per (R) lane was lower than that in the soluble (E)
fraction, and consequently binding to the nitrocellulose
paper could have been higher.
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FIG. 13. HeLa cells were permeabilized and digested in situ with
100,ug of RNase A per ml for 15 min on ice in 0.5 ml of PIMPS buffer
as described in the legend to Fig. 12 and then were extracted for 3
min with 0.5 ml of PIMPS buffer containing the various NaCl
concentrations. E, extracted fraction, R, residual fraction.

DISCUSSION
We described here the preparation of monoclonal antibod-

ies to genuine hnRNP proteins-those which are in direct
contact with hnRNA in vivo. The RNP proteins were
identified by UV cross-linking in intact cells, and the cross-

linked complexes were further used to immunize mice and
obtain hybridoma colonies secreting monoclonal antibodies
against the specific proteins. This approach is general and
may be useful for any RNA-associated proteins in vivo. One
obvious limitation of this approach is that it may fail to
include all of the RNP proteins; there may, theoretically, be
additional proteins which are actually associated with the
RNA in the cell which could, for a variety of chemical and
steric reasons, not become cross-linked by UV light. This is
possible particularly for proteins (if such exist) which inter-
act with the RNA only through the phosphates or through
the sugars rather than through the bases which are the
moieties which become photoactivated. It is also theoretical-
ly possible that some of the proteins for which antibodies
may be obtained are not cross-linked to the hnRNA directly
but to another RNA (e.g., small RNA), which in turn is
cross-linked by UV light to the hnRNA either directly or via
another protein. This latter possibility cannot be completely
ruled out, but it is not likely to be the case for the proteins
described here because no small RNA was detected after
protease digestion of UV cross-linked poly(A)+ hnRNP
complexes (unpublished results).

Previous reports have described studies of hnRNPs with
antibodies (11, 21, 32, 45). Jones and colleagues (21) have

prepared antibodies to the "core" proteins (30,000 to 40,000
daltons) of the 40S hnRNP particles from mouse cells in
chickens and have carried out extensive morphological
studies with them. Christensen et al. (11) have prepared
antibodies to the 40S hnRNP particles and have demonstrat-
ed the presence of these proteins in Drosophila polytene
chromosomes. Risau et al. (45) have recently reported on the
packaging and nonpackaging hnRNP proteins in Drosophila
using monoclonal antibodies. All of these studies have used
in vitro isolated hnRNPs as sources of antigen.
Of the monoclonal antibodies which were obtained to

poly(A)+ hnRNA, the properties of two, designated 2B12
and 3G6, and of the proteins they recognize are described.
2B12 recognizes two related 41K and 43K proteins, which
are shown to be identical to the C proteins of 40S hnRNP
particles (7, 30). The data obtained with 2B12 therefore
establishes that the C proteins are associated with both
poly(A)+ hnRNA and poly(A)- hnRNA in vivo, that they
are segregated to the nucleus, and that the two C proteins are
related to each other. The antibody data also indicate that
the C proteins are phosphorylated and that they are a distinct
group from the other groups of proteins (A and B) which
make up the 40S particle. Furthermore, whereas the A and B
proteins are basic (7), and C proteins are acidic (Fig. 8), and
several antibodies which react with the 41K and 43K pro-
teins at different epitopes do not react with the A and B
proteins. The relative amounts of the 41K and 43K proteins
are constant in many different cellular and biochemical
fractions, and they therefore appear to behave like two
subunit polypeptides of one multisubunit protein or of a
larger structure.
The hnRNP 120K protein has not been previously de-

scribed, although proteins of high molecular weight associat-
ed with hnRNA in vitro (7, 22, 25, 31, 36, 47, 49, 50) and in
vivo (13, 14, 39, 52) have been identified. It is shown to be a
genuine hnRNP protein because it is cross-linked to high-
molecular-weight nonnucleolar nuclear RNA in vivo. The
portion of hnRNA with which it is associated and its
relationship to the A, B, and C proteins of the 40S particles
are not yet known. Sedimentation analysis in sucrose gradi-
ents of hnRNPs prepared by sonication from HeLa cell
nuclei without UV cross-linking also shows that the 120K
protein cosediments with hnRNPs (Y. D. Choi, H. R. Choi,
A. Reicin, and G. Dreyfuss, manuscript in preparation). The
120K protein is a nuclear phosphoprotein which is associat-
ed with both poly(A)+ hnRNA and poly(A)- hnRNA.
One of the interesting points to emerge from the studies

described here relates to the association of the 41K and 43K
proteins with nuclear structures. A substantial fraction of the
41K and 43K proteins (ca. 40% by immunoblotting) is
retained in situ with a nuclear matrix structure which is
resistant to digestion with DNase I and to extraction by 2 M
NaCl. These proteins are, however, completely released at
moderate salt concentration after RNase digestion. This
finding is different from that reported recently by van
Eekelen and van Venrooij (52), in which two proteins which
appear to be the same as the 41K and 43K proteins described
here were described as being associated with the nuclear
matrix even after RNase digestion and therefore were pro-
posed to be the proteins which anchor hnRNA to the nuclear
matrix. The apparent discrepancy may, in part, be the result
of differences in the preparation of the nuclear matrix.
Whereas the nuclear matrix fraction is prepared here in situ,
van Eekelen and van Venrooij (52) used isolated nuclei and
carried out the digestion with RNase after extraction with 2
M NaCl. Kaufman et al. (23) have shown that after exposure
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to high salt concentration nuclei are no longer sensitive to
RNases. It is also possible that van Eekelen and van

Venrooij (52) did not detect the release of the C proteins
from the matrix by RNase because they monitored the
release by sedimentation of the nuclear matrix out of a buffer
of very low ionic strength (10 mM) rather than, as is the case

here, at 100 mM NaCl or higher. It may also be possible that
the identification by these authors of the C proteins without
specific antibodies is not accurate or that our antibodies may
recognize only a subpopulation of the C proteins. It is
interesting that the RNase inhibitor VA increases dramati-
cally the amount of the 41K and 43K proteins and also of the
120K protein which is retained with salt-washed nuclear
structures. This, however, is not necessarily the result of its
RNase inhibitory activity.
The specific antibodies to genuine RNP proteins should

help in the study of their role in the synthesis, processing,
and function of RNA with in vitro systems and microinjec-
tion techniques. Furthermore, the approach described here
for the production of specific antibodies to proteins which
are in direct contact with polynucleotides in vivo may be of
general usefulness to the study of nucleic acid-binding
proteins.
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