Long Interspersed Repeated DNA (LINE) Causes Polymorphism at the Rat Insulin 1 Locus

MALATHI S. LAKSHMIKUMARAN, ETTORE D’AMBROSIO, LAIMONIS A. LAIMINS, DAVID T. LIN, AND ANTHONY V. FURANO

Section on Genomic Structure and Function, Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, and Section on Virus Tumor Biology, Laboratory of Molecular Virology, Division of Cancer Etiology, National Cancer Institute, Bethesda, Maryland 20205

Received 22 April 1985/Accepted 3 June 1985

The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence of at least two different LINE-containing alleles. The presence of LINE-containing alleles in the rat genome suggests that these elements may have played a significant role in the evolution of the rat insulin 1 locus.

MATERIALS AND METHODS

About one-third of various mammalian genomes is composed of families of repeated DNA sequences (4, 32). A major portion of this DNA is highly repeated (i.e., >20,000 copies per family) and is interspersed among nonrepeated DNA (7). Two classes of interspersed repeat DNA families have been identified, based on the length of the repeated element. Short interspersed repeated DNA families contain 100- to 300-base-pair (bp) repeat elements (12, 28, 32), whereas long interspersed repeated DNA families (LINE family) consist of elements that are quite complex and at least several kilobase pairs long (1, 9, 10, 16, 20, 21, 30, 32, 33).

About one-third of the rat genome also is repeated DNA (25). This fraction is dominated by several highly repeated short interspersed repeated DNA families and at least one LINE family, as is the case for other mammalian genomes (42). These families, which did not reanneal as highly repeated DNA (25), are highly transcribed in the rat (42).

Whatever their function, repeated DNA sequences may affect contiguous DNA sequences. These include effects on gene activity due to regulatory elements in the repeated DNA (28), as well as deletion, duplication, inversion, and translocation of the contiguous DNA sequences by homologous recombination between the resident repeated DNA sequence and other members of the repeat family in the genome. Such repeat DNA-mediated events are not just theoretical possibilities. One type of familial hypercholesteremia in humans, for example, is due to deletion of part of the gene for a lipoprotein receptor by recombination between two members of the human Alu short interspersed repeated DNA family (14).

It recently was shown (8) that two single-copy DNA loci of rats are polymorphic due to the presence or absence of a full-length (~6.5-kilobase [kb]) member of the rat LINE family: the IgH locus and the Mki-2 locus, which is a site for the integration of Moloney leukemia virus (38). Here, we demonstrate that the earlier detected EcoRI restriction enzyme site polymorphism at the rat insulin 1 locus (6) also is due to the presence or absence of a highly repeated DNA element. DNA sequence determination of this region shows that the repeated DNA element is a portion of a typical rat LINE sequence and is one member of the inverted repeats that were shown to flank the insulin 1 gene (18). LINE-containing insulin 1 alleles are present in the heterozygous or homozygous states in about 3% of the rat population.

LINE-related polymorphisms at two genetically independent loci indicate that LINE sequences have undergone (and perhaps are presently undergoing) transposition and that this type of polymorphism might be quite general in rats. Since LINE sequences might profoundly affect contiguous DNA sequences (see above), then a LINE-containing locus may be subjected to regulatory phenomena and evolutionary fates that are quite different from its counterpart without a LINE. The implications for genomic evolution are discussed.

MATERIALS AND METHODS

Animals. The DNAs from Sprague-Dawley (T) (SDT) and Sprague-Dawley (R) (SDR) rats were supplied by Linda Jagodziński, Biotech Research Laboratories, Rockville, Md. The DNAs from the Osborne-Mendel, Sprague-Dawley (P) (SDP), Fischer, and Buffalo (B) rats were given to us by Philip N. Tsichlis, Fox Chase Cancer Center, Philadelphia, Pa. The sources of the other DNAs were as described by Witney and Furano (41).

Southern blot preparation and hybridization. DNA was digested with restriction endonucleases and electrophoresed in 1% agarose gels. The DNA was transferred to nitrocellulose filters (35) which were prehybridized at 65°C for 14 to 20
h with a hybridization solution containing 0.4 M sodium phosphate buffer (pH 7.0), 0.25% (wt/vol) sodium dodecyl sulfate, 1 mg of polyvinylpyrrolidone per ml, 1 mg of Ficoll per ml, 100 μg of denatured, sonicated salmon sperm DNA per ml, and 50 μg of heparin per ml (34). They then were hybridized to the appropriate 32P-labeled DNA probes. After hybridization, the filters were washed twice with 2× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) and twice with 3 mM Tris base at room temperature, dried, and exposed to X-ray film at −70°C with an intensifier.

DNA sequencing. The DNA sequence was determined by the chain termination procedure (27). DNA fragments were cloned into M13 mp18 and M13 mp19 (24). ExoIII deletion clones were prepared by the procedure of Henikoff (11). Nucleotide sequences were analyzed by previously published computer programs (5, 40), as well as by programs for detecting short regions of homology between long sequences (M. Kanehisa and D. Lipman, personal communication).

RESULTS

Two nonallelic genes for insulin are present and expressed in the rat, and the coding regions of both the insulin 1 and the insulin 2 genes are homologous (6, 18). Earlier studies showed that the location of an EcoRI site upstream of the insulin 1 locus is polymorphic, such that depending on the source of DNA, the insulin 1 coding sequences were located on either a 7.2- or a 9.4-kb EcoRI fragment or both (6). The insulin 2 locus did not exhibit this polymorphism (6; see below).

To investigate the DNA polymorphism at the insulin 1 locus in more detail, different portions of the insulin 1 region were cloned into PUC12 (Fig. 1A). All the clones except HP contain the insulin coding sequences and can detect insulin 1 and insulin 2 genes (see below).

In the present work we examined eight different individual rats that were not analyzed earlier. Total rat DNA was digested with EcoRI, and blots of these digests were hybridized with PS DNA. Figure 1B shows that the insulin 1 sequences are located on a 7.2-kb EcoRI fragment in a recently trapped wild specimen of *Rattus norvegicus* (RN) and in Osborne-Mendel 1 (OM1), Osborne-Mendel 2 (OM2), B, and SDT rats, whereas in the Fischer rat the insulin 1 gene is located on a 9.4-kb EcoRI fragment. The SDP and SDR rats have two alleles for insulin 1 located on a 7.2- and a 9.4-kb EcoRI fragment. Our data confirm the earlier studies (6) that the insulin 1 gene is polymorphic with respect to the EcoRI site. The earlier studies showed that insulin 2 sequences are located on a 4.0- and a 0.8-kb EcoRI fragment (6, 18). In all of the lanes, an 0.8-kb band was observed which corresponds to insulin 2 sequences (Fig. 1B). The PS DNA probe does not hybridize to the 4.0-kb insulin 2-containing EcoRI fragment, since the probe does not extend into this region of the insulin 2 gene. An extra band (labeled with an asterisk) is present in the SDT, SDR, SDP, and RN lanes. This band was observed only when the temperature of hybridization was lowered from 65 to 55°C and does not correspond to insulin 1 or 2 sequences (also see the legend to Figure 1).

To determine whether the polymorphism at the insulin 1 locus also involved other restriction enzyme sites, total rat DNA was digested with different restriction enzymes. The results (Table 1) show that the insulin 1 locus is also polymorphic with respect to *BamHl*, *BglII*, and *Xbal* sites. In all cases, the restriction fragments containing the insulin 2 gene also were identified. The sizes of these (not shown in

TABLE 1. Insulin 1-containing restriction endonuclease fragments

<table>
<thead>
<tr>
<th>Source of DNA</th>
<th>EcoRI</th>
<th>BamHl</th>
<th>BglII</th>
<th>PsI</th>
<th>Xbal</th>
<th>HindIII</th>
<th>KpnI</th>
<th>Sall</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN (wild)</td>
<td>7.2</td>
<td>7.3</td>
<td>6.7</td>
<td>5.5</td>
<td>5.6</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>SDP</td>
<td>9.4</td>
<td>10.2</td>
<td>11.5</td>
<td>5.5</td>
<td>4.0</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>SDR</td>
<td>7.2</td>
<td>5.3</td>
<td>12.0</td>
<td>5.5</td>
<td>5.5</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>SDT</td>
<td>7.2</td>
<td>9.4</td>
<td>10.0</td>
<td>5.5</td>
<td>6.7</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>OM1</td>
<td>7.2</td>
<td>5.3</td>
<td>10.0</td>
<td>5.5</td>
<td>6.7</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM2</td>
<td>7.2</td>
<td>5.3</td>
<td>10.0</td>
<td>5.5</td>
<td>6.7</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7.2</td>
<td>5.3</td>
<td>10.0</td>
<td>5.5</td>
<td>6.7</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Fischer</td>
<td>9.4</td>
<td>10.2</td>
<td>23</td>
<td>5.0</td>
<td>4.0</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>
DNA was digested with restriction endonucleases and electrophoresed on agarose gels was blotted and hybridized with the PS probe (Fig. 1) exactly as described in the text. A 2.4-kb insulin 1 band was obtained when rat DNA was digested with both HindIII and BamHI (A), and a 4.9-kb band was observed after digestion with PstI and EcoRI (B). The size of the bands was determined with marker DNA (λ DNA digested with HindIII). Lanes: a, RN (wild); b, SDT- rat; c, SDR- rat; d, Fischer- rat.

Table 1) agreed with those previously determined for the cloned insulin 2 gene (6, 18) and exhibited no polymorphism (data not shown).

The above results indicated that the polymorphism at insulin 1 is not due to a single base change, and in the case of the BamHI restriction, three different sized fragments were identified in different rats. This suggests that there are at least three alleles of insulin 1 (see below).

We determined the location of the polymorphic restriction sites with respect to the insulin 1 gene by performing different sets of double restriction enzyme digestions. To determine whether the polymorphism was downstream of the insulin 1 gene, the DNA was first digested with PstI, which digests the insulin 1 locus 341 bp upstream of the translation start site (6; see below), and then with other enzymes: BglII, EcoRI, and XbaI. An example of the blot hybridization of the PstI-EcoRI digests is shown in Fig. 2B, and the results are summarized in Table 2. The insulin 1 gene was located in the same size fragments for all of the rats investigated for each set of double restrictions. Therefore, the EcoRI, XbaI, and BglII restriction sites downstream of insulin 1 are at the same position in the various alleles.

To determine whether the three types of BamHI polymor-

![FIG. 2. Double restriction endonuclease digests of total rat DNA. Total rat DNA (5 μg per lane) that was digested with restriction endonucleases and electrophoresed on agarose gels was blotted and hybridized with the PS probe (Fig. 1) exactly as described in the text. A 2.4-kb insulin 1 band was obtained when rat DNA was digested with both HindIII and BamHI (A), and a 4.9-kb band was observed after digestion with PstI and EcoRI (B). The size of the bands was determined with marker DNA (λ DNA digested with HindIII). Lanes: a, RN (wild); b, SDT- rat; c, SDR- rat; d, Fischer- rat.](http://mcb.asm.org/)

![FIG. 3. Restriction endonuclease map of the rat insulin 1 locus representing the two alleles. The letters represent the various restriction enzyme sites. B, E, H, K, P, S, Sau, and X indicate the restriction sites for the enzymes BamHI, EcoRI, HindIII, KpnI, PstI, SacI, Sau3A, and XbaI, respectively. The coding region of insulin 1 is indicated by the filled boxes.](http://mcb.asm.org/)

![FIG. 4. Polymorphism at the insulin 1 locus is due to the presence or absence of repeated DNA sequences. (A) Partial restriction endonuclease map of the two alleles of insulin 1. B, S, P, and E indicate the sites for BamHI, SacI, PstI, and EcoRI, respectively. (B) Panel 1 shows an ethidium bromide-stained gel. Lane a contains the BamHI-SacI digest of a pBR322 subclone of a LINE-containing insulin 1 allele (see the upper diagram of panel A and Fig. 3). The band labeled BS corresponds to the crosshatched box. Lane b contains an EcoRI-SacI digest of a PUC12 clone that we prepared from the 9.4-kb EcoRI insulin 1 allele (see the lower diagram of panel A and Fig. 3). The band labeled ES corresponds to the crosshatched box. Panel 2 shows an autoradiogram of the hybridization of total rat DNA to a nitrocellulose blot of this gel.](http://mcb.asm.org/)
LINE CAUSES POLYMORPHISM AT THE RAT INSULIN 1 LOCUS

VOL. 5, 1985

LINE sequence (Table 1) are upstream or downstream of insulin 1 coding sequences, DNA from the appropriate rats was restricted with HindIII, which digests the insulin 1 region 1 kb upstream of the insulin 1 coding region (6, 18; see below), and BamHI. The insulin 1 gene was located in the 2.4-kb fragment in all of the rats studied (Fig. 2A). Therefore, all of the polymorphisms that we detected are upstream of the insulin 1 coding region.

From the results of the restriction enzyme analysis shown above (as well as other data not shown), we constructed restriction site maps (Fig. 3). The polymorphic region is about 2.2 kb upstream of insulin 1 coding sequences, and a comparison of the relative positions of the upstream XbaI sites suggests that the diagrammed insulin 1 alleles differ by the presence of a 2.7-kb DNA element.

Repetitive DNA element at the polymorphic region. To investigate the nature of the inserted DNA element, the polymorphic region from each allele was hybridized to total rat DNA. A pBR322 clone of the BamHI-XbaI fragment of the insulin 1 allele associated with the 7.2-kb EcoRI fragment (Fig. 3) was digested with BamHI and SacI to produce the fragment corresponding to the crosshatched region of Fig. 4A (upper diagram). The EcoRI-SacI fragment from the 9.4-kb insulin 1 EcoRI fragment (2) (Fig. 4A, lower diagram, crosshatched bar) was cloned into PUC12. The appropriate restriction enzyme digests of these plasmid clones were resolved by electrophoresis on 1% agarose gel (Fig. 4B, panel 1), and blots of these gels were hybridized to radioactive total rat DNA (Fig. 4B, panel 2). Total rat DNA hybridized to the BamHI-SacI region of the insulin 1 allele that is on the 7.2-kb EcoRI fragment, but not to the corresponding region of the insulin 1 allele that is present on the 9.4-kb fragment. These results indicated that the inserted DNA is a repetitive element. Therefore, the allelic forms of the insulin 1 locus are due to the presence or absence of repetitive DNA sequences.

Sequence of the insulin 1 region. Both the length of the repeated DNA segment at the insulin 1 locus and its pattern of hybridization to various restriction enzyme digests of total rat DNA suggested that the repeated DNA was a member of the rat LINE family (data not shown). To confirm this, we determined the DNA sequence of the portion of a LINE-containing insulin 1 allele that extends from the BamHI site that is upstream of the insulin 1 coding sequence to the XbaI site downstream of it (Fig. 3A). The results are shown in Fig. 5, but here the sequence is written with the XbaI site on the left and the BamHI site on the right.

The last 1,600 bp or so of the sequence shown in Fig. 5 is very homologous to a part of two other rat LINE members that we also sequenced (LINES 3 and 4). (The entire sequence and other characteristics of the rat LINE family will be published elsewhere.) Comparison of the insulin 1 sequence and the rat LINE 3 sequence clearly shows the demarcation between the repeated and nonrepeated DNA at the insulin 1 allele. Figure 6a shows a diagram of an entire rat LINE member aligned with the insulin 1 sequence presented in Fig. 5 (see the legend for Fig. 6 for more details).

In addition to being almost identical in sequence to the two other rat LINE members, the insulin 1 LINE also contains an open reading frame that extends from the asterisk in Fig. 5 (nucleotide 4129) for 265 codons to the BamHI site, which is as far as we sequenced. However, Soares et al. also have sequenced the same insulin 1 allele (personal communication) and showed that the open reading frame extends beyond the BamHI site into what we have called the C segment (Fig. 6; 8). Furthermore, rat LINES 3 and 4 also contain open reading frames that begin in segment D of the LINE and also extend into the C segment (data not shown).

FIG. 5. DNA sequence of a LINE-containing allele of insulin 1. The region sequenced extends from the BamHI site (B) which is 4 kb upstream of the beginning of the insulin 1 gene to the XbaI site (X) that is just downstream of the gene (Fig. 3A). The sequence here is written with the XbaI site at the 5' end and the BamHI site at the 3' end and thus is in the opposite orientation to that shown in Fig. 3. This is so the LINE portion of the sequence is in the same orientation as that generally presented for these structures (33; Fig. 6). Some of the restriction enzyme sites shown in Fig. 3 are indicated, as well as the initiation and termination codons of the insulin coding sequence of which both strands are shown. The LINE portion of the insulin 1 allele was compared with the relevant portions of two other LINE sequences (LINES 3 and 4), randomly selected from a recombinant DNA library of rat DNA (42). Identities and differences among those sequences are indicated by a + and a letter or −, respectively. The "X" indicates the ATG which is at the start of the open reading frame in the insulin 1 LINE and extends to the BamHI site (see the text). The imperfect, inverted repeat and tandem array of four GAATTs are underlined (see the text). The region of the insulin 1 sequence enclosed in brackets was not determined by us but was taken from the Gen Bank data base (Genetic Sequence Data Bank, compiled and maintained by the Los Alamos National Laboratory, Los Alamos, NM 87545). About 95% of the sequence was determined in both directions or from a series of overlapping EcoRI deletion clones (11).
Open reading frames have been identified in the corresponding region of mouse LINEs and primate LINEs (19) and thus appear to be a general feature of mammalian LINEs. We analyzed all of the non-LINE insulin 1 sequence for homology to all segments of the rat LINE diagrammed in Fig. 6 by computer methods suitable for detecting either general or local regions of homology. No statistically significant homologies were detected. We did find an imperfect, inverted repeat of 33 bp which contains four copies of the sequence AGCT about 1,900 bp to the left of the LINE-non-LINE junction and a tandem array of four GAATs sequences about 500 bp to the left of this junction (Fig. 5). Neither of these was found on randomized versions of the DNA sequence between the insulin coding sequence and the LINE sequence.

DISCUSSION

Polymorphism at the rat insulin 1 locus is due to the presence or absence of an approximately 2.7-kb DNA element. Our DNA sequence determination, as well as that of Soares et al. (personal communication), shows that this DNA is a member of the highly repeated rat LINE family. The presence or absence of LINE sequences at a given locus indicates that LINE elements are (or were) mobile in the rat genome.

Seven of the eight rats examined by us have at least one LINE-containing insulin 1 allele, and only one rat was homozygous for the absence of LINE sequences. Since these rats included laboratory strains established as independent colonies from wild rat populations at widely different times and locations (17), as well as a recently trapped wild rat, LINE-containing insulin 1 alleles are quite common in the population of R. norvegicus. Therefore, either this allele arose early in the evolutionary history of rats or LINE sequences are now undergoing transposition at the insulin 1 locus. The BamHI restriction enzyme analysis of LINE-containing alleles indicates that at least two different versions of the rat LINE sequences are present at the insulin 1 locus. Repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other LINE members in the genome are possible explanations for this. Determination of the DNA sequence of individual alleles that lack the LINE as well as of the junction between LINE and non-LINE sequences from different LINE-containing alleles should reveal whether this locus has undergone repeated independent transpositional events.

It recently was shown that two other single-copy loci, the Igh locus and the Mlvi-2 locus, are polymorphic due to the presence or absence of rat LINE sequences (8). The LINE sequences at these other two loci are more than 6 kb long and are colinear with the LINE depicted in Fig. 6. By contrast, the LINE sequences at the insulin 1 locus consist of just the D and C segments (Fig. 6). Other studies (unpublished data) showed that at least half of the B and D LINE segments in the genome are present in 5.5-kb BamHI fragments. These results as well as others indicate that at least half of the LINE sequences are organized as the >6.0-kb structure shown in Fig. 6a.

The presence or absence of LINE sequences at three genetically independent loci does not necessarily indicate that LINEs have transposed randomly in the genome. Both the Igh and Mlvi-2 loci normally undergo recombination events (8): the Igh locus during B-cell differentiation (26) and the Mlvi-2 locus as a site of integration in Moloney leukemia virus (38). Recent evidence from Soares et al. (personal communication) indicates that the insulin 1 gene probably arose from the integration of a DNA copy of an aberrant transcript of the ancestral insulin 2 gene. This suggests that the insulin 1 locus also may be located in a naturally recombinogenic region of the genome. Perhaps LINE transposition involves only regions such as these, and LINE-related polymorphisms may in fact identify such regions. Whether the inverted repeat or the tandem array of four GAATs present at the insulin 1 region (Fig. 5 and 6) is related to LINE transposition to this site might be clarified when the DNA sequence of the other LINE integration sites is known.

There is no homology detectable by hybridization (8) or by DNA sequence comparison (this work) between LINE sequences and the three sites involved in LINE transposition. This suggests that homologous recombination does not play a role in the transposition of LINEs at these loci. This is not surprising since illegitimate recombination (i.e., non-homologous recombination) appears to have been involved in the transposition of a wide variety of DNA sequences that has occurred in mammalian genomes (10, 13, 15, 22, 23, 28, 31, 36, 37, 39). Many of these transposed sequences, which include highly repeated ones, are transcribed, and the transposition is thought to involve the integration of a DNA copy of an RNA intermediate (10, 13, 15, 22, 23, 28, 31, 36, 37, 39). Since all segments of the rat LINE are highly transcribed in various rat cell lines (42; unpublished data), this pathway also may be used for the transposition of rat LINE sequences. However, other mechanisms also are possible.

We know of only one other report of a single-copy locus that is polymorphic due to the presence or absence of a highly repeated DNA sequence (29). In this case, polymorphism at the rat prolactin locus is due to a member of a short interspersed repeated DNA family. As mentioned in the introduction, whatever its function, a transcriptionally active or highly repeated, or both, DNA element could dramatically affect contiguous DNA sequences. In addition to altering gene activity, the repeated DNA sequences could cause genetic rearrangement of the contiguous DNA. It has long been speculated (e.g., see references 3 and 31) that genomic rearrangements mediated by homologous recombination among repeated DNA sequences could expose functional genes to novel regulatory environments and thereby produce plasticity in the genome, which in the short term may have adaptive value and in the long term may be fundamental to genomic evolution and speciation. It is clear that transposition of repeated DNA to (or from) a given locus also could alter the regulatory environment of a functional gene. If the locus is polymorphic with respect to the repeated DNA sequence, then the original functioning locus would be maintained in the population, whereas the altered locus could be subjected to any of the above putative effects of the repeated DNA sequences.

ACKNOWLEDGMENTS

We thank William Rutter for providing the pBR322 clone of the 9.4-kb EcoRI insulin 1 allele (2) and Peter Lomedico for the clone of the BamHI-XbaI fragment of the insulin 1 allele that is associated with the 7.4-kb EcoRI fragment. We are especially appreciative of Arghiris Efstratiadis and his colleagues M. Soares and E. Schon for communicating to us their results and their DNA sequence of the LINE-containing insulin 1 allele before publication.

LITERATURE CITED

