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FIG. 4. Level of neo transcripts in stable transformants. Stable
pNEO3 (lane 1), pNESS41 (lane 2), pNESS17 (lane 3), and
pNELKI1 (lane 4) transformants were expanded into mass culture.
The cells were grown at 35°C in DMEM. Total cytoplasmic RNA
was extracted and size-separated on formamide-formaldehyde gels.
The RNA blot was hybridized with nick-translated neo DNA
fragment (1). The autoradiograms are shown. The expected size of
the neo transcript is indicated by the arrow.

were added to cotransfection mixtures, the CAT activity in
response to A23187 and temperature decreased correspond-
ingly, while the basal level was relatively unaffected. These
results suggested to us that the Sma/Stu fragment con-
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tained sequences capable of interacting with diffusible fac-
tors involved in the induction by A23187 and the K12 ts
mutation.

The calcium ionophore-inducible promoter is active and
inducible in different cell lines. Since the p3CS5 gene has been
shown to be inducible by A23187 in a variety of cells (28), its
promoter was likely to be active in different cell types of
various mammalian species. However, recent experiments
suggested that some viral and cellular promoters might
exhibit species specificity. For instance, the SV40 early
promoter was more active in hamster than mouse cells,
whereas the mouse metallothionein promoter was active in
mouse cells but not in hamster cells (22). To examine this
issue, we transfected pIl10 into various cell lines such as
mouse LA9, NIH 3T3, human hepatoma HepG2, rat fibro-
blast NRK, and monkey COS cells (Table 1). As a compar-
ison, pSV2CAT was used in parallel transient transfection
assays. Similar to the viral enhancer, pI10 was ubiquitously
expressed in all the cell types tested. The variation in the
promoter activities among cell lines may reflect the relative
competency of different cell lines in transfection assays as
well as species specificity. With the exception of the COS
cells, pI10 was consistently three- to ninefold more active
than pSV2CAT in the noninduced state. After treatment

FIG. 5. Inducibility of neo transcripts by A23187. Total cytoplasmic RNA was extracted from pNESS41 stable transformants (1 through
4), pNESS17 stable transformants (5 through 7), and pNELKI1 stablé transformants (8 through 10). The RNA was reannealed to a neo
synthetic oligomer (see Materials and Methods). The primer-extended neo transcripts were analyzed on a 6% polyacrylamide-urea gel. The
autoradiograms are shown. —, Normal culture conditions; +, A23187 added to culture medium; M, $X174 Haelll digest size marker.
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FIG. 6. Competition for trans regulatory factors by the Sma/Stu
fragment. K12 cells grown in 10-cm-diameter dishes were cotrans-
fected with 1 pg of test plasmid (pI10; size, 5.7 kb) and increasing
amounts of competitor plasmid (pUC291W; size, 3.0 kb). To main-
tain a constant amount of DNA used in each experiment, control
plasmid (pUCS; size, 2.7 kb) was added to adjust the total plasmid
DNA at 11 pg. At 48 to 50 h after transfection, cell extract was
prepared from the transfected cells treated for 16 h with 7 pM
A23187 at 35°C (A), from transfected cells treated for 16 h at 39.5°C
(@), or from control cells incubated in normal medium at 35°C (O).
Each extract was assayed for protein concentration, and the CAT
activity was determined using 75 pg of protein. The relative CAT
activity, expressed as fold increase over that of the control cells,
was plotted against the molar ratio of competitor to test DNA.

with 7 pM A23187, the pI10 promoter was 10- to 25-fold
more active than the SV40 early promoter.

Since in COS cells the CAT activity expressed by
pSV2CAT was considerably higher than in other cell lines,
we assayed for the copy number of the plasmids in these
transformants just before cell extracts were prepared (Fig.
7). As expected, pSV2CAT replicated to high copy numbers
in the COS cells which were permissive for SV40 replication.
Although pI10 was not able to replicate in the COS cells, the
CAT activity driven by its promoter was about equal to that
of the amplified pSV2CAT (Table 1).

DISCUSSION

The discovery of viral enhancer elements and tissue-
specific enhancer elements such as those found in the
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immunoglobulin genes led to the expectation that other
cellular genes would also contain upstream promoter ele-
ments with enhancerlike properties. Indeed, such elements
are implied for the tissue-specific expression of insulin and
chymotrypsin genes (34), for the RNA polymerase I pro-
moter activity of ribosomal genes (17), for viral or poly(I)-
poly(C) activation of B-interferon genes (10), and for the
basal level transcription of the metallothionein gene
(Haslinger and Karin, in press). Our studies on the calcium
ionophore regulatory/promoter sequence provide another
example and allow us to make some comparisons of this new
class of non-tissue-specific cellular regulatory sequences
with some of the better-characterized enhancer elements.

The sequence and structural organization of the rat pro-
moter shares both similarities and differences with known
enhancer elements. First, several sequence elements homol-
ogous to the viral and immunoglobulin heavy-chain core
enhancer sequence can be located. These, together with the
occurrence of four CCAAT sequences, might explain the
very high basal level activity of this promoter sequence
under noninduced conditions. Second, the organization of
the rat regulatory sequence into two direct repeat domains
resembles the tandem repeats found in activator sequences
of a number of DNA viruses and cellular gene, although
these sequences are in general shorter and are more pre-
cisely matched. Thus, it has been proposed that duplication
of upstream promoter elements may be associated with the
involvement of some enhancer activities (Haslinger and
Karin, in press). The occurrence of a stretch of eight
alternating purine/pyrimidine residues near the junction of
the two direct repeat domains is intriguing, as similar fea-
tures have been found in other viral and cellular promoter
sequences (25; Haslinger and Karin, in press).

This promoter sequence is GC rich, but the striking
feature is the high abundance of CpG residues in this
promoter region (CpG/GpC = 1.0). To maintain the CpG
bases, these residues must have persisted as nonmethylated
forms. It would be interesting to determine whether this gene
system, like a few other housekeeping genes, is located
within islands of nonmethylated CpG-rich DNA found in
mammalian genomes (3, 37).

Most of the cellular enhancers described so far act to
increase transcriptional activities in a conditional manner.
For example, the immunoglobulin enhancer only functions
in lymphoid cells, and the B-interferon enhancer requires
inductien for its activity. If one compares some of these
enhancers with the SV40 early enhancer, they have similar
activities to the viral element (24). In contrast, the rat
regulatory sequence we have cloned in pI10 is more efficient
than the SV40 enhancer in many cell lines, before and after
A23187 induction. The differential promoter activities are
not due to replication or stability of the transfected pI10
DNA, as compared to pSV2CAT (Fig. 7; unpublished data).
When the 291-nt fragment dissected from pI10 is fused to the
HSV-tk promoter, it is capable of significantly increasing the
mRNA level of a covalently linked heterologous gene. Like
other enhancers, it can act in an orientation-independent
manner over a distance of 2,000 nt from the heterologous
gene unit. Notably, even in the absence of A23187 induction,
the enhancing property of the 291-nt fragment towards the
HSV-tk promoter activity is substantial.

However, evidence is accumulating that the positioning of
the enhancer element and the promoter sequences may
modulate the enhancer activities. For example, the SV40
enhancer will act on the human B-globin gene containing an
intact promoter but not on a B-globin gene with only a TATA
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TABLE 1. promoter activites in various cell lines®

% Conversion of [**C]chloramphenicol®

Plasmid A8 LA9 NIH 3T3 HepG2 NRK Cos 7
pSV2CAT - 0.8 (1.0) 0.3 (1.0) 1.6 (1.0) 0.8 (1.0) 69.5 (1.0)
+ 0.6 (0.7) 0.5(1.7) 22 (1.4) 2.53.1) 82.9 (1.2)
pI10 - 2.4 (3.0) 0.9 3.0) 129 8.1) 7.5 (9.4) 37.9 0.5
+ 7.8 (9.8) 4.8 (16.0) 39.4 (24.6) 16.4 (20.5) 89.4 (1.3)

2 CAT activity was assayed from cells transfected for 48 to 50 h with 3 pg of either pSV2CAT or pIl0 and expressed as percent conversion of

[*C]chloramphenicol to its acetylated forms.

5 Numbers in parentheses indicate the fold increase over the basal activity of pSV2CAT, set as unity in each of the cell lines.

box unless the two elements are very close (32). Similar
observations were made for the interferon gene regulatory
element and the B-interferon TATA box (10). To test for
such effects, we fused the 291-nt fragment directly 5’ to the
SV40 promoter with most of the 72-base-pair repeats re-
moved (pSV1BCAT; 4). We found that although the 291-nt
fragment was as effective as the SV40 72-base-pair repeats it
replaced, the element no longer responded to A23187 induc-
tion (data not shown). In another set of experiments, when
this enhancer was placed at the 3’ end of the intact SV40
promoter in pSV2neo (31), it could enhance the transforma-
tion efficiency (A. Y. Lin and A. S. Lee, unpublished data).
Therefore, in using enhancers for activating heterologous
gene units, the choice of downstream promoters and the
proximity of the enhancer and the promoter may be critical.
The effect of species specificity is also an important consid-
eration.

While analyzing the initiation site for the HSV-tk/neo
fusion transcripts using the neo synthetic primer, we noted
that in all the pNEO3 recombinants tested, including the

PpSV2CAT pI10
1 2 g 4

FIG. 7. Analysis of transfected DNA in COS cells. COS 7 cells
grown in 15-cm-diameter dishes were transfected with 6 ug of
pSV2CAT (lanes 1 and 2) or pI10 (lanes 3 and 4). At 48 h after
transfection, plasmid DNA was isolated from the cells (13). The
DNA was suspended in 100 pl of 0.01 M Tris (pH 7.4)-0.001 M
EDTA and subjected to electrophoresis on a 1% agarose gel.
Portions of 20 pl (lanes 1 and 3) or 40 ul (lanes 2 and 4) from each
sample were applied to the gel. After electrophoresis, the gel was
blotted (30) and hybridized with nick-translated pBR322 DNA
(specific activity, 5 X 107 cpm/ng). Autoradiograms are shown.

parental plasmid pNEO3, the major primer extended band
was slightly larger than the predicted size initiating from the
normal cap site for the HSV-tk promoter (23). When another
synthetic oligonucleotide was used which was complemen-
tary to the 5’ untranslated tk region (+34 to +50) of the
tk/neo fusion transcript, the major start site was more
precisely mapped at about 100 nt upstream of the normal site
(unpublished data). Since this result was obtained also in the
case of the parental plasmid with no enhancer, the selective
use of the upstream site is an unique property of this tk/neo
fusion gene and is not due to the insertion of an enhancer. It
is possible that the fusion of the HSV-tk promoter to the neo
gene in this construct caused secondary structuré changes
resulting in the utilizaiton of some cryptic initiation signals
which were present upstream of the normal start site. For
example, a CAAT- and TATA-like sequence can be located
90 and 40 nt upstream of the start site we observed. In other
HSV-tk fusion genes, major transcripts originating upstream
from the normal tk start site have also been observed (6, 10).

Transcriptional regulatory factors with the ability to en-
hance transcription in vitro and to bind to defined stretches
of promoter DNA have recently been purified from cellular
extracts (5, 7, 26). The 291-nt sequence we have isolated has
the ability to compete for trans-acting factors involved in
A23187 induction and those defined by the K12 ts mutation.
More detailed analyses of the molecular interaction between
these factors and DNA will provide information on this new
class of inducers which is specifically generated when cul-
tured cells are treated with A23187.
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