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FIG. 5. Stimulation of appropriately initiated transcripts from the human hsp7O promoter by the polyomavirus early proteins. RNA from
transfected cells was analyzed by S1 nuclease analysis, and the resultant fragments were separated on an 8% polyacrylamide-urea gel. Lanes
M, End-labeled HaeIII digested 4,X174 included as marker; lane P, probe. Cells in all lanes except A and B were transfected with pIR17 (4
p.g) and the following DNA: A, pIR17 (12 ,ug), B, pA133 (12 ,ug and no pIR17); C, pA133 (8 ,ug) and pyLT (1 ,ug); D, pA133 (8 ,ug); E, pA133
(8 ,ug) and py3T (1 jig); F, pAl107 (8 ,ug) and pyLT (1 pLg); G, pA107 (8 [Lg); H, pA107 (8 jig) and py3T (1 ,ug); I, pA1250 (8 ,ug); J, pA1250 and
py3T (1 jig); K, pA107 (8 ,ug); L, pA107 (8 jig); and py3T (1 ,ug). The diagram at the bottom shows the promoter regions of the plasmids used
(arrow is at start site) and the expected lengths of protected fragments after S1 nuclease analysis.

ability to bind large T antigen (data not shown). Plasmid
pA58+5 had a set of changes that made the sequence
identical to that ofT antigen binding site 1 of SV40, a binding
site that is recognized as efficiently by polyomavirus large T
antigen as hsp7O site 1 (data not shown). All four mutants
were significantly reduced in activity in BALB/c 3T3 cells
compared with plasmid pA58+1 (Fig. 6). The mutations of
plasmids pA58+2 and pA58+3 both caused a twofold de-
crease in activity. The mutations in plasmids pA58+4 and
pA58+5 both reduced activity to that of the starting plasmid,
pQ58.

Results similar to those obtained with CAT expression
were obtained by analyzing RNA level (Fig. 7). Plasmid
pIR17 was used as an internal control in these studies. The
level of correctly initiated hsp7O transcript from plasmid
pA58+1 was significantly higher than that from pA58, imply-
ing that hsp7O site 1 is indeed capable of functionally
replacing the hsp7O CAT box. The artificial promoter of
pA58+1 was only minimally weaker than the wild-type hsp7O
promoter (Fig. 7, compare lanes D and E). The data imply
that the sequences responsible for activity of this artificial
promoter overlap with those that are responsible for binding
polyomavirus large T antigen. As there was no T antigen
present in these experiments, the data suggest that a cellular

protein has an overlapping but not identical binding speci-
ficity as that of polyomavirus large T antigen.

DISCUSSION

Role of T antigen binding in transcriptional stimulation.
Two sets of observations led to the hypothesis that the large
T antigens of the papovaviruses SV40 and polyomavirus
may directly interact with cellular promoters. First, viral
infection results in rapid changes in the spectrum of newly
synthesized cellular proteins (40). Second, these antigens in
certain circumstances can confer an indefinite growth, or

immortal, phenotype on primary cells which clearly entails
changes in the pattern of expression of the cellular genome
(45, 48). Both antigens are localized primarily in the nucleus
of cells. It has been reported that SV40 large T antigen
mutants that are not transported to the nucleus do not
immortalize primary baby rat kidney cells (38). Although
there are numerous roles that a protein can play in the
nucleus to confer these phenotypes, one attractive hypothe-
sis has been that these nuclear antigens directly modulate the
activity of cellular promoters.
We have shown that polyomavirus large T antigen binds to

two sites between 110 and 170 bases 5' of the transcription
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FIG. 6. Construction and mutational analysis of an artificial promoter in which human hsp7O polyomavirus large T antigen binding site 1
functions as an upstream element. The DNA sequences surrounding the HindllI site (boxed) of plasmid pA58 and derivatives are shown. The
solid line indicates homology with pA58+1. For each experiment, the indicated pA58 series plasmid (8 ,ug) was transfected with plasmid
pXGH5 (2 ,ug). The value for relative expression was determined by correcting the level of CAT activity from the pA58 series plasmids for
transfection efficiency as determined by growth hormone activity from pXGH5. In each experiment, pA58 activity was arbitrarily assigned
a value of 1.0. ND, Not done.

initiation site of one of the human hsp7O genes. These
binding sites have the canonical large T antigen binding
sequence defined by studies on binding to the viral genome:
two pentanucleotides of the sequence GPuGGC separated
by approximately one turn of the DNA double helix (12). We
showed by methylation interference studies that large T
antigen interacts with the predicted G residues in or adjacent
to these pentanucleotide sequences in hsp7O binding site 1.
All of these G residues lie on one face of the DNA helix and
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contact the protein in the major groove, observations con-
sistent with what is known for both SV40 and polyomavirus
large T antigen binding to viral regulatory sequences (12, 29).
A difficulty in interpreting binding studies done with

purified protein and purified DNA fragments lies in deter-
mining the biological relevance of the observed binding. The
strength of the binding interaction to hsp7O site 1 is roughly
equivalent to the strength of individual large T antigen
binding sites in the polyomavirus genome (Fig. 4). This
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FIG. 7. Amount and structure of RNA transcribed from plasmids containing hsp7O site I as an upstream promoter element. RNA was
analyzed by S1 nuclease analysis as described in the legend to Fig. 5. Cells in lanes A through G were transfected with plR17 (4 pLg) and the
following plasmid (8 ,ug): A, pA58; B, pA58+1; C, pA58+4; D, pA68; E, pA58+1; F, pA58+3, G, pA58+5. Lane M (marker) and P (probe)
are as in Fig. 5. INT. REF., Transcript from internal reference plasmid pIR17.

i I - n
qp&qpAi I lmim

VOL. 6, 1986

I TATA

--- 411kw.'m
Om

e

 on A
pril 20, 2021 by guest

http://m
cb.asm

.org/
D

ow
nloaded from

 

http://mcb.asm.org/


3188 KINGSTON ET AL.

suggests that T antigen will recognize hsp7O site 1 in vivo, as
it is capable of finding specific sites in its own genome in
vivo. Does binding to hsp7O site 1 elicit any effect? Because
human cells are nonpermissive for infection by poly-
omavirus, we have been unable to directly assess the effect
of polyomavirus infection on expression of the human hsp7O
promoter in situ. We have instead used transient transfection
protocols to investigate regulation of the human hsp7O
promoter region by polyomavirus large T antigen.

Expression of the entire early region of polyomavirus
results in a 5- to 20-fold stimulation of the level of correctly
initiated hsp7O transcripts (Fig. 5). However, stimulation
from the hsp7O start site is not noticeably altered by deletion
of either or both of the hsp7O T antigen binding sites. The
plasmids containing these mutant promoters contained no
detectable T antigen binding sites (Fig. 1E). Thus, the
polyomavirus early region can activate this promoter in the
apparent absence of sequence-specific binding of large T
antigen. Expression from a hybrid gene containing the
mouse metallothionein I promoter fused to the human
growth hormone coding region was also activated by the
polyomavirus early region, again suggesting that there is no
strict sequence dependence for stimulation. Indirect activa-
tion of transcription has been seen with the gene products of
the immortalizing regions of other DNA tumor viruses,
notably the Ela region of adenovirus (24, 37, 42, 60).
Previous data are consistent with the hypothesis that both
the Ela proteins and SV40 large T antigen alter the function
of general transcription factors in the cell (1, 7, 8, 33;
reviewed in reference 36).
The data presented here argue that the polyomavirus early

region proteins probably activate transcription by similar
indirect means. Every tested deletion mutant of the human
hsp7O promoter that retained basal activity was stimulated
by these proteins (Table 1). There was some specificity to
this stimulation; the hsp7O promoter was stimulated twice as
much as the mouse metallothionein I promoter used as an
internal control. Whether this specificity results from dif-
ferent sets of transcription factors recognizing the basal
elements of these two promoters or instead reflects a con-
tribution of a specific regulatory element within the human
hsp7O promoter is not clear.

Identification of a novel promoter element. Why are there
recognition sequences for polyomavirus large T antigen in
the human hsp7O promoter? By constructing an artificial
promoter in which the sequence of binding site 1 was
inserted in place of the normal upstream promoter CAT box
sequence, we demonstrate here that the binding site 1
sequence is capable of functioning as an upstream promoter
element. Three sequence elements determine the ability of
SV40 large T antigen to bind DNA; two pentanucleotides of
the sequence 5'-GAGGC-3' and a spacer sequence (15, 29,
49, 53). Polyomavirus large T antigen binding sites have a
similar structure. The affinity of these proteins for any
particular site appears to be partially dependent on the
number of repeats of the pentanucleotide sequence (12, 49,
56). Alteration of either pentanucleotide of hsp7O binding
site 1 both eliminated polyomavirus large T binding (data not
shown) and decreased the activity of the artificial promoter
(Fig. 6 and 7). Alteration of both pentanucleotide sequences
eliminated the ability of site 1 to function as an upstream
element. Interestingly, mutation of hsp7O site 1 into SV40
site 1, primarily by altering the constitution of the 7-base
spacer sequence, also reduced the strength of the artificial
promoter. This latter sequence bound polyomavirus large T
antigen efficiently (data not shown) but did not appear to

function as an upstream sequence. These data offer a genetic
argument that a cellular transcription factor exists that has
an overlapping but not identical binding specificity to that of
polyomavirus large T antigen.
What role might this sequence play in regulation of the

human hsp7O promoter in vivo? It is clearly not necessary
for basal activity of the promoter after transfection into
established cell lines (Fig. 5). The hsp7O promoter is regu-
lated by numerous effects and is one of the earliest pro-
moters turned on during embryonic development (3). An
attractive hypothesis is that different upstream transcription
factors play a role in regulating the promoter in the numer-
ous settings in which it is active; the cellular factor that
recognizes hsp7O T antigen binding site 1 may be one of
these factors.
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