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FIG. 2. Properties of yeast ,uE3-binding proteins as revealed by DNase I footprint and methylation interference assays and comparison
with those of murine NF-,LE3. The lower strand (A) and upper strand (B) of fragment A (see Fig. 1) or fragment A with additional 5' sequences
(to the Hinfl site) were analyzed by DNase I footprint and dimethyl sulfate interference assays. The lower and upper strands were analyzed
on 5 and 8% denaturing polyacrylamide gels, respectively. Free and bound complexes are indicated. G-cleavage reactions or G-
plus-A-cleavage reactions were used as markers. Cleaved guanidine residues are numbered by the system of Gillies et al. (15). Relevant
regions of protection are indicated by vertical lines. (C) Summary of the results for the yeast protein (YEB-3) and murine NF-pLE3/pEBP-C2.
The methylguanines that interfere with binding in vitro are encircled; the region protected from DNase I cleavage is bracketed. Open circles
indicate guanines identified by in vivo studies (10); the conventional ,uE3 motif is boxed; arrows mark altered bases in the mutant 1E3 motif
(see Fig. 1).
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FIG. 3. Determination of the apparent molecular size of yE3BP.
Yeast nuclear proteins were resolved by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis; gel slices were processed (see
text) and analyzed in mobility shift assays by using the ,uE3
oligonucleotide. The first lane contained labeled oligonucleotide
only; the second lane contained oligonucleotide plus unfractionated
yeast nuclear extract. The remaining lanes contained labeled oligo-
nucleotide plus proteins eluted from various gel slices, with the
approximate protein molecular size range indicated for each gel
slice. kd, Kilodaltons.

was to the ,uE3 and octa oligonucleotides, with specificity
being defined by the ability of homologous unlabeled oligo-
nucleotides to uniquely compete for the binding (not shown).
To demonstrate that the mobility shifts resulted from yeast

proteins binding specifically to the ,uE3 and octa motifs, we
examined the binding to similar oligonucleotides containing
mutated sites, previously shown to abolish in vivo activity
(26). Three base changes were introduced into the ,uE3
oligonucleotide (see Fig. 2). The mutant octa oligonucleotide
replaced the ATTTGCAT octa sequence with ATCTAGAT.
The pattern of shifted bands seen with the normal ,uE3
oligonucleotide (Fig. 1, lane 2) was completely altered when
an oligonucleotide containing the mutant ,uE3 motif was
used instead (lane 3). The intensity of the upper band was
drastically reduced, the lower two bands disappeared, and
two new bands of different mobility appeared (we have not
characterized the binding specificity of these new complex-
es). These results were corroborated by using two larger
restriction fragments derived from the IgH enhancer (lanes 5
to 8). Incubation of yeast extracts with enhancer fragment A,
containing the wild-type ,uE3 motif (lane 6), resulted in a
triplet pattern of shifted fragments reminiscent of the pattern
obtained with the oligonucleotide. Fragment B, carrying the
mutant ,uE3 element, was not shifted at all (lane 7). Taken
together, the results indicate that yeast cells possess a
protein whose binding specificity overlaps the IgH enhancer
,uE3 motif. In contrast to these results, the octa mutation had
no effect on binding to the octa oligonucleotide, indicating
that the specific binding was not directed by the octa motif
per se but was likely due to flanking sequences. Consistent
with this view, a separate oligonucleotide carrying the
octanucleotide with different flanking sequences failed to
form any specific complexes with yeast proteins (not
shown). These latter results were somewhat unexpected
because a yeast octa-binding activity had previously been
suggested (35).
To further characterize the binding with the ,uE3 motif, we

carried out DNase I protection and methylation interference
studies to delineate the precise DNA contacts of the yeast
protein (8). Figure 2 illustrates the results obtained when the
upper band of the triplet obtained with fragment A (Fig. 1,
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FIG. 4. Effect of the p.E3 motif on transcription in yeast cells. All plasmids are derivatives of pLG669-Z, in which 1-galactosidase
expression is driven by a CYCI promoter. Plasmid 1 carries an intact CYCI promoter (with its cognate UAS elements). Plasmid 2 carries a
CYCI promoter deleted of its UAS elements. The remaining plasmids carry ,uE3 oligonucleotides in place of the CYCI UAS elements. Arrows
indicate the orientation of the oligonucleotides; arrows pointing to the right correspond to the orientation given in the legend to Fig. 1 (pointing
in the direction of transcription of the IgH gene). The hatched arrow indicates on oligonucleotide carrying the mutant ,uE3 motif (see Fig. 2).
Yeast a cells (146a; MATa ura3 his4 leu2 trpl), ot cells (29oa; MATTa ura3 his4 leu2 trpl), and a/oc cells (YPH49; MA Tal/c ura3-521ura3-52
lys2-8011lys2-801 ade2-JOJ/ade2-101 trp-JAJItrp-JAJ) were transformed with each of these plasmids, and ,-galactosidase levels of at least five
individual transformants were determined. Numbers represent the means and standard deviations for these values. Since the diploid cells
were not isogenic to the two haploid strains, P-galactosidase levels cannot be directly compared.
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lane 6) and analyzed. An examination of free and bound
forms of each strand of the fragment clearly identified a
region that was both sensitive to dimethyl sulfate and
resistant to DNase I. A summary of the results, along with
those previously reported for partially purified murine NF-
,uE3 (from Peterson and Calame [40]; referred to by those
authors as pLEBP-C2), is also shown in Fig. 2. The affected
region lies approximately between nucleotides 395 and 409
of the enhancer (numbering system of Gillies et al. [15]); this
is the same region that encompasses the p.E3 motif. In fact,
a comparison of the DNA contacts made by the yeast protein
and murine NF-,uE3 shows a striking similarity between the
two proteins. Dimethyl sulfate interference assays identified
six to seven guanines that were involved in the binding of the
yeast protein. Methylation of four and seven of these resi-
dues also inhibits binding of human and murine NF-pE3,
respectively (1, 10, 40, 45, 46). DNase I sensitivity of the
yeast binding activity identified virtually the same region of
protection reported for NF-,uE3. Similar results were ob-
tained with all three of the complexes obtained with the
mobility shift assay (data not shown), and we therefore
assume that the additional bands represent either degrada-
tion products or different members of a family of related
proteins.
These binding data provide compelling evidence that yeast

cells contain a pLE3-binding protein. We have designated this
protein YEB-3 (yeast p,E3-binding protein).
To determine the molecular weight of YEB-3, we sub-

jected crude yeast nuclear extracts to sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis, eluted and rena-
tured proteins from individual gel slices, and carried out
mobility shift assays by using labeled ,E3 oligonucleotides
(42). YEB-3 activity (upper band of the triplet) was detected
in a gel slice corresponding to a molecular size range of 33 to
41 kilodaltons. This result argues that YEB-3 does not exist
as a heterodimeric protein with subunits of disparate molec-
ular sizes and that its binding does not require cofactors
present in the yeast nuclear extract. We favor the model in
which YEB-3 binds DNA as either a monomer or a ho-
modimer. From a similar experiment, we have come to the
same conclusions concerning NF-,uE3 but have determined
its molecular size to be roughly 25 kilodaltons larger than
that of yE3BP (H. Beckmann and T. Kadesch, manuscript in
preparation). The middle band of the triplet seen with whole
nuclear extract was not recovered in this assay. This result
may reflect an inherent inability to denature and renature the
protein responsible for this complex or the fact that this
binding activity represents a heterodimeric protein.
The existence of a specific DNA-binding protein does not

necessarily mean that the protein functions as a transcription
factor (23). Ultimately, two tests must be used to prove this
relationship. First, mutation or deletion of the DNA se-
quences that comprise the binding site should result in
decreased transcription. Alternatively, linking of the binding
site to a reporter gene should activate transcription of that
gene in an appropriate manner. Second, the presence or
absence of the protein must be reflected by transcription
rates. For some DNA-binding proteins, the second criterion
has been met by carrying out in vitro transcription reactions
using factor-depleted extracts (4, 6, 29, 43). In the case of
IgH enhancer-binding proteins, only those that bind to the
octa motif have been shown to meet both criteria and can
therefore be considered true transcription factors (12, 28,
44).
As a first step toward determining the functional role of

YEB-3, we tested the ability of the [LE3 motif to stimulate

transcription in yeast cells. Specifically, we determined
whether the ,uE3 oligonucleotide was capable of stimulating
transcription from a CYCI promoter, crippled as a result of
the removal of its cognate upstream activating sequence
(UAS) elements. We used a CYCI promoter linked to the
lacZ gene of Escherichia coli, and therefore relative tran-
scription rates were reflected by levels of 3-galactosidase
(18) in yeast cells transformed with the various plasmids
(22). The plasmids bearing these transcription units carry a
segment of the yeast 2,um circle and therefore replicate
autonomously in yeast cells. Removal of the CYCI UASs led
to the expected dramatic decrease in 3-galactosidase expres-
sion (Fig. 4; compare plasmids 1 and 2). Replacing the CYCI
UASs with the ,E3 oligonucleotide in either orientation
stimulated basal transcription approximately 6- to 12-fold
(plasmids 3 and 4). The oligonucleotide containing the mu-
tant ,uE3 motif failed to effect this stimulation (plasmid 5).
Four copies of the p.E3 oligonucleotide in either orientation
stimulated transcription even further, to roughly four times
that observed with one copy (plasmids 6 and 7). Two copies
of the oligonucleotide gave rise to intermediate transcription
levels. The UAS activity resulted in normal transcription
start sites (not shown) and was not appreciably dependent on
yeast mating type.
The simplest interpretation of our results is that YEB-3 is

a transcription factor that acts through its cognate DNA-
binding site. Consistent with this, we have noted that the 5'
region of the yeast GAL80 gene contains a match of 11 of 13
nucleotides to the region footprinted by YEB-3 (38). How-
ever, as noted above, these data alone do not prove the
validity of this interpretation. Verification will require the
generation of YEB-3 mutants or YEB-3-dependent tran-
scription in vitro. Moreover, it remains to be seen in general
whether mammalian and yeast transcription factors are
homologous at the level of protein sequence and can there-
fore truly be considered to be evolutionarily conserved. For
the case of AP-1, the sequence of the yeast gene (yAP-1)
predicts homology with mammalian AP-1 that is restricted to
the DNA-binding domain (36).
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