transcriptional regulation
- Research ArticleTumor Necrosis Factor Alpha Regulates Skeletal Myogenesis by Inhibiting SP1 Interaction with cis-Acting Regulatory Elements within the Fbxl2 Gene Promoter
Skeletal muscle regeneration and repair involve the recruitment and proliferation of resident satellite cells that exit the cell cycle during the process of myogenic differentiation to form myofibers. We demonstrate that the ubiquitin E3 ligase subunit FBXL2 is essential for skeletal myogenesis through its important effects on cell cycle progression and cell proliferative signaling. Further, we characterize a new mechanism whereby...
- Research Article | SpotlightInflammation Triggers Liver X Receptor-Dependent Lipogenesis
Immune cell function can be modulated by changes in lipid metabolism. Our studies indicate that cholesterol and fatty acid synthesis increases in macrophages between 12 and 18 h after the activation of Toll-like receptors with proinflammatory stimuli and that the upregulation of lipogenesis may contribute to the resolution of inflammation.
- Research ArticleRegional Gene Repression by DNA Double-Strand Breaks in G1 Phase Cells
DNA damage responses (DDR) to double-strand breaks (DSBs) alter cellular transcription programs at the genome-wide level. Through processes that are less well understood, DSBs also alter transcriptional responses locally, which may be important for efficient DSB repair. Here, we developed an approach to elucidate the cis-acting responses to DSBs in G1 phase cells.
- Research Article | SpotlightGATA2 and PU.1 Collaborate To Activate the Expression of the Mouse Ms4a2 Gene, Encoding FcεRIβ, through Distinct Mechanisms...
GATA factors GATA1 and GATA2 and ETS factor PU.1 are known to function antagonistically during hematopoietic development. In mouse mast cells, however, these factors are coexpressed and activate the expression of the Ms4a2 gene encoding the β chain of the high-affinity IgE receptor (FcεRI). The present study showed that these factors cooperatively regulate Ms4a2 gene expression through distinct mechanisms.
- MinireviewTranscriptional and Epigenomic Regulation of Adipogenesis
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators.
- Research ArticleTranscriptional Suppression of CPI-17 Gene Expression in Vascular Smooth Muscle Cells by Tumor Necrosis Factor, Krüppel-Like Factor 4, and Sp1 Is Associated with Lipopolysaccharide-Induced Vascular Hypocontractility, Hypotension, and Mortality
Vasodilatory shock in sepsis is caused by the failure of the vasculature to respond to vasopressors, which results in hypotension, multiorgan failure, and ultimately patient death. Recently, it was reported that CPI-17, a key player in the regulation of smooth muscle contraction, was downregulated by lipopolysaccharide (LPS) in mesenteric arteries concordant with vascular hypocontractilty.
- Research ArticleSNW1, a Novel Transcriptional Regulator of the NF-κB Pathway
The nuclear factor kappa B (NF-κB) family of transcription factors plays a central role in coordinating the expression of genes that control inflammation, immune responses, cell proliferation, and a variety of other biological processes. In an attempt to identify novel regulators of this pathway, we performed whole-genome RNA interference (RNAi) screens in physiologically relevant human macrophages in response to lipopolysaccharide and...